• 沒有找到結果。

5.4 Suggestions for Future Research

5.4.3 Graphical analogical thinking

Since AR Representations instructions are mostly based on various representations, it would be much desirable that took representations as the ground to measure students’

improvement, instead of test scores.

Furthermore, one of the finding from the interview of the present study revealed that students’ graphical analogical thinking ability somehow has a subtle correlation with their improvement in test scores. It is worth to explore other indicators to determine the achievement or understanding when learning with AR Representations.

57

REFERENCES

Abrahamson, D., & Trninic, D. (2011, June 20-23). Toward an embodied-interaction design framework for mathematical concepts. In T. Moher, C. Quintana, & S. Price (Eds.), Proceedings of the 10th International Conference on Interaction Design and Children (pp. 1-10), Ann Arbor, MI, USA.

Agrawal, J., & Morin, L. L. (2016). Evidence Based Practices: Applications of Concrete Representational Abstract Framework across Math Concepts for Students with Mathematics Disabilities. Learning Disabilities Research & Practice, 31(1), 34-44.

Ainsworth, S. (1999). The functions of multiple representations. Computers & Education, 33(2-3), 131-152.

Ainsworth, S., Bibby, P., & Wood, D. (2002). Examining the effects of different multiple representational systems in learning primary mathematics. The Journal of the Learning Sciences, 11(1), 25-61.

Arcavi, A. (2003). The role of visual representations in the learning of mathematics.

Educational Studies in Mathematics, 52(3), 215-241.

Arslan Ari, I. (2018). Learning from instructional animations: H ow does prior knowledge mediate the effect of visual cues? Journal of Computer Assisted Learning, 34(2), 140-149.

Barraza Castillo, R. I., Cruz Sánchez, V. G., & Vergara Villegas, O. O. (2015). A pilot study on the use of mobile augmented reality for interactive experimentation in quadratic equations. Mathematical Problems in Engineering, 2015, 1-13.

Billinghurst, M. (2002). Augmented reality in education [New Horizons for Learning].

Retrieved from http://www.solomonalexis.com/downloads/ar_edu.pdf.

Bujak, K. R., Radu, I., Catrambone, R., Macintyre, B., Zheng, R., & Golubski, G. (2013). A psychological perspective on augmented reality in the mathematics classroom.

58

Computers & Education, 68, 536-544.

Byrnes, J. P. (1992). The conceptual basis of procedural learning. Cognitive Development, 7(2), 235-257.

Chahine, I. (2011). The role of translations between and within representations on the conceptual understanding of fraction knowledge: A trans-cultural study. Journal of Mathematics Education, 4(1), 47-59.

Chang, H. Y., Wu, H. K., & Hsu, Y. S. (2013). Integrating a mobile augmented reality activity to contextualize student learning of a socioscientific issue. British Journal of

Educational Technology, 44(3), E95-E99.

Charness, N., Reingold, E. M., Pomplun, M., & Stampe, D. M. (2001). The perceptual aspect of skilled performance in chess: Evidence from eye movements. Memory & Cognition, 29(8), 1146-1152.

Chi, M. T., Feltovich, P. J., & Glaser, R. (1981). Categorization and representation of physics problems by experts and novices. Cognitive science, 5(2), 121-152.

Clements, D. H. (1999). ‘Concrete’manipulatives, concrete ideas. Contemporary Issues in Early Childhood, 1(1), 45-60.

Cook, M., Wiebe, E. N., & Carter, G. (2008). The influence of prior knowledge on viewing and interpreting graphics with macroscopic and molecular representations. Science Education, 92(5), 848-867.

Cuendet, S., Bonnard, Q., Do-Lenh, S., & Dillenbourg, P. (2013). Designing augmented reality for the classroom. Computers & Education, 68, 557-569.

Davis, J. D. (2007). Real-world contexts, multiple representations, student-invented terminology, and y-intercept. Mathematical Thinking and Learning, 9(4), 387-418.

de Koning, B. B., Tabbers, H. K., Rikers, R. M., & Paas, F. (2010). Attention guidance in learning from a complex animation: Seeing is understanding?. Learning and Instruction, 20(2), 111-122.

59

DeLoache, J. S. (2000). Dual representation and young children's use of scale models. Child development, 71(2), 329-338.

Fennema, E. H. (1972). The relative effectiveness of a symbolic and a concrete model in learning a selected mathematical principle. Journal for Research in Mathematics Education, 3(4), 233-238.

Goldin, G., & Shteingold, N. (2001). Systems of representations and the development of mathematical concepts. In A. Cuoco & F. Curcio (Eds.), Roles of Representation in School Mathematics, 63rd Yearbook (2001) (pp.1-23). Reston, VA: NCTM.

Hegarty, M., & Kozhevnikov, M. (1999). Types of visual–spatial representations and mathematical problem solving. Journal of Educational Psychology, 91(4), 684-689.

Johnson, A. M., Ozogul, G., & Reisslein, M. (2014). Supporting multimedia learning with visual signalling and animated pedagogical agent: Moderating effects of prior knowledge. Journal of Computer Assisted Learning, 31(2), 97-115.

Jones, S. R. (2018). Prototype images in mathematics education: the case of the graphical representation of the definite integral. Educational Studies in Mathematics, 97(3), 215-234.

Kaput, J. J. (1986). Information technology and mathematics: Opening new representational windows. In J.J.Kaput (Ed.) Information technology and mathematics: Opening new representational windows (pp. 1-25). MA: Educational Technology Center, Cambridge.

Kaufmann, H., & Schmalstieg, D. (2003). Mathematics and geometry education with collaborative augmented reality. Computers & Graphics, 27(3), 339-345.

Leong, Y. H., Ho, W. K., & Cheng, L. P. (2015). Concrete-Pictorial-Abstract: Surveying its origins and charting its future. The Mathematics Educator, 16(1), 1-18.

Lesh, R. (1981). Applied mathematical problem solving. Educational Studies in Mathematics, 12(2), 235-264.

MacDonald, A. (2013). Using children's representations to investigate meaning-making in

60

mathematics. Australasian Journal of Early Childhood, 38(2), 65-73.

Martin, T. (2009). A theory of physically distributed learning: How external environments and internal states interact in mathematics learning. Child Development Perspectives, 3(3), 140-144.

Martin, T., & Schwartz, D. L. (2005). Physically distributed learning: Adapting and

reinterpreting physical environments in the development of fraction concepts. Cognitive Science, 29(4), 587-625.

Mayer, R. E., & Anderson, R. B. (1991). Animations need narrations: An experimental test of a dual-coding hypothesis. Journal of Educational Psychology, 83(4), 484-490.

Mayer, R. E., & Anderson, R. B. (1992). The instructive animation: Helping students build connections between words and pictures in multimedia learning. Journal of

Educational Psychology, 84(4), 444-452.

Mayer, R. E., & Moreno, R. (2003). Nine ways to reduce cognitive load in multimedia learning. Educational Psychologist, 38(1), 43-52.

McNeil, N. M., & Fyfe, E. R. (2012). “Concreteness fading” promotes transfer of mathematical knowledge. Learning and Instruction, 22(6), 440-448.

Milgram, P., & Kishino, F. (1994). A taxonomy of mixed reality visual displays. IEICE TRANSACTIONS on Information and Systems, 77(12), 1321-1329.

Montola, M. (2011). A ludological view on the pervasive mixed-reality game research paradigm. Personal and Ubiquitous Computing, 15(1), 3-12.

Moreno, R., & Mayer, R. E. (1999). Multimedia-supported metaphors for meaning making in mathematics. Cognition and Instruction, 17(3), 215-248.

Moyer-Packenham, P., & Suh, J. (2012). Learning mathematics with technology: The influence of virtual manipulatives on different achievement groups. Journal of Computers in Mathematics and Science Teaching, 31(1), 39-59.

Ni, Y., & Zhou, Y. D. (2005). Teaching and learning fraction and rational numbers: The

61

origins and implications of whole number bias. Educational Psychologist, 40(1), 27-52.

Ninaus, M., Kiili, K., McMullen, J., & Moeller, K. (2017). Assessing fraction knowledge by a digital game. Computers in Human Behavior, 70, 197-206.

Quarles, J., Lampotang, S., Fischler, I., Fishwick, P., & Lok, B. (2009). Scaffolded learning with mixed reality. Computers & Graphics, 33(1), 34-46.

Radu, I. (2014). Augmented reality in education: a meta-review and cross-media analysis.

Personal and Ubiquitous Computing, 18(6), 1533-1543.

Radu, I., & Antle, A. (2017, March 19). Embodied learning mechanics and their relationship to usability of handheld augmented reality. In I. Radu, E. Southgate, F. Ortega, & S.

Smith(Eds.), 2017 IEEE Virtual Reality Workshop on K-12 Embodied Learning through Virtual & Augmented Reality (KELVAR) (2017) (pp. 1-5), Los Angeles, CA, USA.

Radu, I., McCarthy, B., & Kao, Y. (2016, March 19-23). Discovering educational augmented reality math applications by prototyping with elementary-school teachers. In T.

Höllerer, V. Interrante, A. Lécuyer, E. Suma (Eds.), Virtual Reality (VR) (pp. 271-272), Greenville, SC, USA.

Rau, M. A. (2018). Making connections among multiple visual representations: how do sense-making skills and perceptual fluency relate to learning of chemistry knowledge?

Instructional Science, 46(2), 209-243.

Rau, M. A., Aleven, V., & Rummel, N. (2017). Supporting students in making sense of connections and in becoming perceptually fluent in making connections among multiple graphical representations. Journal of Educational Psychology, 109(3), 355.

Rau, M. A., Rummel, N., Aleven, V., Pacilio, L., & Tunc-Pekkan, Z. (2012). How to schedule multiple graphical representations? A classroom experiment with an intelligent tutoring system for fractions. In J. V. Aalst, K. Thompson, M. J. Jacobson, & P. Reimann (Eds.), The future of learning: Proceedings of the 10th international conference of the learning sciences (ICLS 2012) (Vol. 1, pp. 64–71). Sydney: ISLS.

62

Reimer, K., & Moyer, P. S. (2005). Third-graders learn about fractions using virtual manipulatives: A classroom study. The Journal of Computers in Mathematics and Science Teaching, 24(1), 5-25.

Richter, J., Scheiter, K., & Eitel, A. (2016). Signaling text-picture relations in multimedia learning: A comprehensive meta-analysis. Educational Research Review, 17, 19-36.

Salinas, P., & Pulido, R. (2017). Understanding the Conics through Augmented Reality.

Eurasia Journal of Mathematics, Science & Technology Education, 13(2), 341-354.

Sarama, J., & Clements, D. H. (2009). “Concrete” computer manipulatives in mathematics education. Child Development Perspectives, 3(3), 145-150.

Sowell, E. J. (1989). Effects of manipulative materials in mathematics instruction. Journal for Research in Mathematics Education, 20(5), 498-505.

Stoyle, K. L., & Morris, B. J. (2017). Blogging mathematics: Using technology to support mathematical explanations for learning fractions. Computers & Education, 111, 114-127.

Suh, J., Moyer, P. S., & Heo, H. J. (2005). Examining technology uses in the classroom:

Developing fraction sense using virtual manipulative concept tutorials. Journal of Interactive Online Learning, 3(4), 1-21.

Treagust, D., Chittleborough, G., & Mamiala, T. (2003). The role of submicroscopic and symbolic representations in chemical explanations. International Journal of Science Education, 25(11), 1353-1368.

Uttal, D. H., & O’Doherty, K. (2008). Comprehending and learning from ‘visualizations’: A developmental perspective. In J.K. Gilbert et al. (eds.), Visualization: Theory and practice in science education (pp. 53-72). Springer, Dordrecht.

Uttal, D. H., O’Doherty, K., Newland, R., Hand, L. L., & DeLoache, J. (2009). Dual representation and the linking of concrete and symbolic representations. Child Development Perspectives, 3(3), 156-159.

63

Uttal, D. H., Scudder, K. V., & DeLoache, J. S. (1997). Manipulatives as symbols: A new perspective on the use of concrete objects to teach mathematics. Journal of Applied Developmental Psychology, 18(1), 37-54.

Wearne, D., & Hiebert, J. (1988). A cognitive approach to meaningful mathematics instruction: Testing a local theory using decimal numbers. Journal for Research in Mathematics Education, 19(5), 371-384.

Wu, H. K., Lee, S. W. Y., Chang, H. Y., & Liang, J. C. (2013). Current status, opportunities and challenges of augmented reality in education. Computers & education, 62, 41-49.

64

APPENDICES

Appendix A: Understanding pretest

分數量一量(1)

姓名 : ______________ 座號 : _______________

( ) 1. 媽媽把一個蘋果平分成 4 片,其中小花吃了 3 片,請問 小花吃了幾個蘋果?

(1)

(2)

(3)

( ) 2. 請問下列哪一個圖形是

?

(1)

(2)

(3)

( ) 3. 請問圖中灰色的部分是 (1)

(2)

(3)

第 1 頁,共 3 頁

65

( ) 4. 請問下列何者為 ?

( ) 5. 哪一個塗色的部分是

2

7

條彩帶?

(1)

(2)

(3)

( ) 6. 姊姊買了一些糖果,他把全部的糖果分成 3 堆 ( 像下圖的樣子),請問下列任何一堆是不是全部的 ?

(1) 是,因為分成 3 堆

(2) 不是,因為沒有 1 堆是 3 個 (3) 不是,因為沒有平分成 3 堆。

   

(1)  (2) (3)

第 2 頁,共 3 頁

66

( ) 7. 下列分別為

、 、

,請問哪一個比較大?

(1)

(2)

(3) 一樣大

( ) 8. 哪一個塗色的部分是

盒巧克力?

 

(2)

(1)  (3)

完成了!再檢查看看有沒有寫上名字喲!

第 66 頁,共 3 頁

67

Appendix B: Understanding posttest

分數量一量(2)

姓名 : ______________ 座號 : _______________

( ) 1. 媽媽把一個蘋果平分成 8 片,其中小花吃了 6 片,請問小花吃 了幾個蘋果?

(1)

(2)

(3)

( ) 2. 請問下列哪一個圖形是 ?

(1)

(2)

(3)

( ) 3. 請問圖中灰色的部分是

(1)

(2)

(3)

 

第 1 頁,共 3 頁

68 ( ) 4. 請問下列何者為 ?

( ) 5. 哪一個塗色的部分是 2

9 條彩帶?

(1)

(2)

(3)

( ) 6. 姊姊買了一些糖果,他把全部的糖果分成 4 堆 (像下圖的樣

子),請問下列任何一堆是不是全部的 ?

(1) 是,因為分成 4 堆

(2) 不是,因為沒有 1 堆是 4 個 (3) 不是,因為沒有平分成 4 堆。

 

(1)  (2) (3)

第 2 頁,共 3 頁

69

( ) 7. 下列分別為 、 、 ,請問哪一個比較大?

(1)

(2)

(3) 一樣大

( ) 8. 哪一個塗色的部分是 盒巧克力?

 

(2)

(1)  (3)

完成了!再檢查看看有沒有寫上名字喲!

第 3 頁,共 3 頁

70

Appendix C: Pictures treatment instructions

 

71

 

第 3 頁,共 3 頁

相關文件