• 沒有找到結果。

Hyperconjugation (or no-bond resonance) has a long and tumultuous history, some aspects of which were mentioned in an earlier paper by one of us.21 As noted in the text describing Chart 1, three types of hyperconjugative interactions are possible between an incipient bond i resulting in addition and a vicinal bond v: σiv*, σi*-σv, and σiv. The first two of these interactions, which are attractive (energy-lowering) in nature, are associated with the names of Anh and Cieplak, respectively, while the third and repulsive one has been advocated by Felkin.

The experimental results described in this paper provide strong evidence for the following points. First, the Anh model predicts that the electrons of the newly forming bond will delocalize into the more electron-poor antiperiplanarσ* orbital, thus favoring product configurations exactly opposite to those observed. We conclude that this model, whatever its merits in predicting the stereochemistry of the reac-tions of open-chain or monocyclic compounds, fails as an explanation for addition and elimination with the more rigid polycyclic compounds. Second, both the Cieplak and Felkin models are in accord with the observed facts. However, the latter view, so far as

we know, has never been seriously considered as an explanation for the huge rate ratios so often encoun-tered in heterolysis. Because the stereochemistries of the reactions discussed here and of the heterolytic process are invariably the same, we feel that it is unreasonable to accept one model for the one set and a different one for the other. The unified Winstein-Cieplak view is a powerful tool for explaining the stereogenesis (or -demise) in all addition (or elimina-tion) chemistry. The principal distinction between the Winstein and Cieplak models is that the former depends on the possibility of delocalization into an empty p orbital, whereas the latter rests on the availability of a vacantσi* orbital.

This picture has gradually become persuasive to us because of the multitude of reactions the stereo-chemistry of which was found to be predictable on that basis; they include not only solvolysis and nucleophilic addition to carbonyl compounds but also the capture of carbocations, carbenes, radicals and carbanions, the electrophilic addition to olefins, the full variety of cycloadditions, sigmatropic shifts, metalation of dienes, and sulfide oxidation. It ac-counts for the effect of introducing remote charge centers, for the solvent effect observed with 5-azaad-amantan-2-one, and for the changeover in configu-ration of the sulfoxides formed from 2-thiaadaman-tanes depending on the choice of reagent. It helped us find a literature error in the assignment of a13C chemical shift in a case where the model appeared to fail.134It allowed us to predict the stereochemistry depicted in Scheme 8; we know of no other basis on which such a prediction could have been made with confidence.

One of the objections occasionally raised against the Cieplak model is the apparent contradiction of stabilizing a transition state by delocalizing bonding electrons into the antibonding component of a newly forming bond.193 However, as we have commented elsewhere,82“... by virtue of microscopic reversibility, the transition states for bond formation and cleavage are the same. The explanation is paradoxical only if one attributes too literal a meaning to the term

‘antibonding’. The proposition that electronic energy is lowered by delocalization into a vacant orbital of higher energy is a fundamental tenet of quantum chemistry.”

To be sure, there are a number of ends that need to be accounted for. One of these concerns some intriguing experiments by Meyers et al. The unsatur-ated bicyclic amide 166-Me undergoes cyclopropana-tion predominantly at its more hindered endo face, leading these authors to attribute their finding to transition-state hyperconjugation with the bridge-head methyl group functioning as the donor.194 However, it was later found that compound 166-C2F5

is also subject to endo cyclopropyl formation,195 yet one would hardly expect the pentafluoro group to have donor properties. One possible explanation78 might be that with the alkoxy and pentafluoroethyl functions serving as the vicinal bonds, the transition-state polarization is opposite to what it normally is, and the incipient bond becomes the donor (as in the Anh model; see Scheme 5).

Another problem is the peculiar failure of the trimethylstannyl group to assist in radical abstrac-tion by the en face;130another, the interesting rever-sal of the trimethylsilyl group, which appears to function as a donor in ground-state chemistry, but as an acceptor in a photocycloaddition.139Also prob-lematic is the behavior of olefin 167-X. While most reactions with the double bond occur syn to the electron-withdrawing substituents if these are cyano or mesylate, cycloaddition with diazomethane occurs mostly anti.196 Finally, it needs be mentioned that nitroxylation of adamantanes carrying an electron-withdrawing group at C-2 occurs primarily at C-5 (syn), but if the substituent is alkyl, it takes place mostly at C-7 (anti). Thus, alkyl groups would have to be considered electron donors if located at C-2 even though they behave as acceptors at C-5.197 But regardless of which explanation will eventually be agreed upon as the correct one, the data do seem to tell us that the addition to trigonal centers is assisted by electron-rich antiperiplanar vicinal bonds, and there is no reason to suppose that this principle is limited to highly symmetrical, rigid polycyclic mol-ecules.

One may ask whether the efforts to understand the nature of the electronic effect in face selection in addition and elimination, as detailed in the papers in this issue, will bear any fruit, given the fact that so much controversy continues to surround the vari-ous proposals to explain it. Our feeling is that the information uncovered by the use of cyclic and polycyclic probe molecules can be summarized by the simple statement that the reagent tends to approach (or depart from) that face which is anti to the more electron-rich antiperiplanar vicinal bonds. Whatever factor is behind this experimental observation, it must surely also play a role in the chemistry of open-chain molecules. This means that there is a confor-mation for such molecules which has an electronic advantage over all others. That factor may of course be offset or even swamped by steric considerations;

however, predictions of the stereochemistry of addi-tion processes based only on estimates of which substituents are small, medium, or large will never be as successful as they could be.

XIII. Acknowledgments

The corresponding author expresses his gratitude to the National Science Foundation and to the donors of the Petroleum Research Fund for supporting the research described herein. We thank two of the referees who read our paper in its entirety and made numerous helpful suggestions.

References

(1) Wigfield, D. C. Tetrahedron 1979, 35, 449.

(2) Boone, J. R.; Ashby, E. C. Top. Stereochem. 1979, 11, 53.

(3) Gung, B. W. Tetrahedron 1996, 52, 5263.

(4) Zimmerman, H. E. Acc. Chem. Res. 1987, 20, 263.

(5) Pollack, R. M. Tetrahedron 1989, 45, 4913.

(6) Fallis, A. G.; Lu, Y.-F. Adv. Cycloaddit. 1993, 3, 1.

(7) Franck, R. W. In Conformational Behavior of Six-Membered Rings; Juaristi, E., Ed.; VCH: New York, 1995; Chapter 5.

(8) Paddon-Row, M. N. Acc. Chem. Res. 1982, 15, 245.

(9) Bowden, K.; Grubbs, E. J. Chem. Soc. Rev. 1996, 171.

(10) Juaristi, E.; Cuevas, G. Tetrahedron 1992, 48, 5019.

(11) Perrin, C. L. Tetrahedron 1995, 51, 11901.

(12) Saunders, M.; Jimenez-Vazquez, H. A. Chem. Rev. 1991, 91, 375.

(13) Wu, Y.-D.; Houk, K. N. J. Am. Chem. Soc. 1987, 109, 908.

(14) Mukherjee, D.; Wu, Y.-D.; Fronczek, F. R.; Houk, K. N. J. Am.

Chem. Soc. 1988, 110, 3328.

(15) Fraser, R. R.; Stanciulescu, M. J. Am. Chem. Soc. 1987, 109, 1580.

(16) Macaulay, J. B.; Fallis, A. G. J. Am. Chem. Soc. 1988, 110, 4074.

(17) Lodge, E. P.; Heathcock, C. H. J. Am. Chem. Soc. 1987, 109, 3353.

(18) Wong, S. S.; Paddon-Row, M. N. J. Chem. Soc., Chem. Commun.

1990, 456.

(19) Fleischer, J. M.; Gushurst, A. J.; Jorgensen, W. L. J. Org. Chem.

1995, 60, 490.

(20) Tomoda, S.; Senju, T. Tetrahedron 1997, 53, 9057.

(21) Li, H.; le Noble, W. J. Recl. Trav. Chim. Pays-Bas 1992, 111, 199.

(22) le Noble, W. J. Croat. Chem. Acta (Special Issue) 1992, 65, 489.

(23) Schleyer, P. v. R.; Buss, V. J. Am. Chem. Soc. 1969, 91, 5880.

(24) Martin, J. C.; Ree, B. J. Am. Chem. Soc. 1969, 91, 5882.

(25) Blackwood, J. E.; Gladys, C. L.; Koenig, K. L.; Petrarca, A. E.;

Rush, J. E. J. Am. Chem. Soc. 1968, 90, 509.

(26) For a fuller discussion of stereochemical descriptors, see: (a) Hanson, K. R. J. Am. Chem. Soc. 1966, 88, 2731. (b) Eliel, E. L.

J. Chem. Educ. 1991, 48, 163. (c) Kaloustian, S. A.; Kaloustian, M. K. J. Chem. Educ. 1975, 52, 56.

(27) Brown, H. C. The Nonclassical Ion Problem; Plenum Press: New York, 1977.

(28) Winstein, S.; Shatavsky, M.; Norton, C.; Woodward, R. B. J. Am.

Chem. Soc. 1955, 77, 4183.

(29) Raber, D. J.; Bingham, R. C.; Harris, J. M.; Fry, J. L.; Hall, R.

E.; Schleyer, P. v. R. J. Am. Chem. Soc. 1970, 92, 5977.

(30) (a) le Noble, W. J.; Chiou, D.-M.; Maluszynska, H.; Okaya, Y.

Tetrahedron Lett. 1977, 3865. (b) Okaya, Y.; Maluszynska, H.;

Chiou, D.-M.; le Noble, W. J. Acta Crystallogr. B 1978, 34, 3434.

(c) Okaya, Y.; Chiou, D.-M.; le Noble, W. J. Acta Crystallogr. B 1979, 35, 2268. (d) Okaya, Y.; Lin, S. Y.; Chiou, D.-M.; le Noble, W. J. Acta Crystallogr. B 1980, 36, 977. (e) Lin, S. Y.; Ionov, M.;

Okaya, Y.; Chiou, D.-M.; le Noble, W. J. Acta Crystallogr. B 1982, 38, 1666. (f) Lin, S. Y.; Okaya, Y.; Chiou, D.-M.; le Noble, W. J.

Acta Crystallogr. B 1982, 38, 1669.

(31) (a) Srivastava, S.; Cheung, C. K.; le Noble, W. J. Magn. Res.

Chem. 1985, 23, 232; 1989, 27, II. (b) Pekhk, T. I.; Lippmaa, E.

T.; Lavrova, L. N.; Vinogradova, N. N.; Klimova, N. V.; Shmar’yan, M. I.; Skoldinov, A. P.; Russ. J. Org. Chem. (Engl. Transl.) 1979, 14, 1526. (c) Lantvoev, V. I.; Russ. J. Org. Chem. (Engl. Transl.) 1980, 16, 1409.

(32) Bone, J. A.; Pritt, J. R.; Whiting, M. C. J. Chem. Soc., Perkin Trans. 2 1975, 1447 and earlier papers quoted therein. For an entirely different approach toward the confirmation of retentive solvolysis of 2-adamantyl esters, see Nordlander, J. E.; Kotian, K. D.; Raff, D. E.; Grohol, W. P.; Vishwanuth, V. M.; Winemiller, J. J. J. Am. Chem. Soc. 1983, 105, 863. See also Banert, K.;

Kurniento, A. Chem. Ber. 1986, 119, 3826.

(33) Cheung, C. K.; Tseng, L. T.; Lin, M.-h.; Srivastava, S.; le Noble, W. J. J. Am. Chem. Soc. 1986, 108, 1598; 1987, 109, 7239. See also Lin, M.-h.; le Noble, W. J. J. Labelled Compd. Radiopharm.

1987, 24, 1285.

(34) le Noble, W. J.; Chiou, D. M.; Okaya, Y. Tetrahedron Lett. 1978, 1961.

(39) Herrmann, R.; Kirmse, W. Liebigs Ann. Chem. 1995, 699 (see also ref 44 and 198 below).

(40) McMurry, J. E.; Lectka, T.; Hodge, N. C. J. Am. Chem. Soc. 1989, 111, 8867.

(41) Sorensen, T. S.; Whitworth, S. M. J. Am. Chem. Soc. 1990, 112, 8135.

(42) Liu, K.-T.; Chang, L.-W.; Lee, S.-M. Tetrahedron Lett. 1994, 35, 5231.

(43) Kirchen, R. P.; Ranganayakulu, K.; Sorensen, T. S. J. Am. Chem.

Soc. 1987, 109, 7816.

(44) Laube, T. Acc. Chem. Res. 1995, 28, 399. Laube comments:

“bridging and hyperconjugation are related phenomena, but hyperconjugation does not lead to such strong changes of geometry as observed for bridging. There is no clear boundary

between these two effects; they are considered as regions in the spectrum of charge delocalization effects between the extreme cases “no charge delocalization” and “strong charge delocalization with bridging.” To the present authors, this description is a perfect example of the arbitrariness in drawing distinctions between bridging, hyperconjugation, sigma delocalization, neigh-boring group effects, etc.

(45) Laube, T.; Hollenstein, S. Helv. Chim. Acta 1994, 77, 1773. The structure of the 1,3,7-trimethyladamant-5-yl cation was also reported to show such effects: Laube, T. Angew. Chem., Int Ed.

Engl. 1986, 25, 349.

(46) Laube, T.; Olah, G. A.; Bau, R. J. Am. Chem. Soc. 1997, 119, 3087. See also Laube, T.; Ha, T.-K. J. Am. Chem. Soc. 1988, 110, 5511. Laube, T. J. Am. Chem. Soc. 1993, 115, 7240. Yannoni, C. S.; Kendrick, R. D.; Myhre, P. C.; Bebout, D. C.; Petersen, B.

L. J. Am. Chem. Soc. 1989, 111, 6440.

(47) Grob, C. A.; Rich, R. Tetrahedron Lett. 1978, 29, 663.

(48) Adcock, W.; Iyer, V. S. J. Org. Chem. 1988, 53, 5259. Adcock, W.; Iyer, V. S. Magn. Res. Chem. 1991, 29, 381.

(49) Adcock, W.; Krstic, A. R.; Duggan, P. J.; Shiner, V. J.; Coope, J.; Ensinger, M. W. J. Am. Chem. Soc. 1990, 112, 3140.

(50) Adcock, W.; Trout, N. A. J. Org. Chem. 1991, 56, 3229. Adcock, W.; Trout, N. A. Magn. Res. Chem. 1998, 36, 181.

(51) Adcock, W.; Clark, C. I.; Houmam, A.; Krstic, A. R.; Saveant, J.-M. J. Org. Chem. 1996, 61, 2891.

(55) Vinkovic, V.; Mlinaric-Majerski, K.; Marinic, Z. Tetrahedron Lett.

1992, 33, 7441.

(56) Vo¨gtle, F.; Frank, M.; Nieger, M.; Belser, P.; von Zelewsky, A.;

Balzami, V.; Barigellatti; DeCola, L.; Flamigni, L. Angew. Chem., Int. Ed. Engl. 1993, 32, 1643.

(57) The 4-oxo-substituted 2-adamantyl esters furnish an example.

See: Yoshida, M.; Kurihara, Y.; Takeuchi, K. Synth. Commun.

1992, 20, 3529 and Yoshida, M.; Mitsyhashi, K.; Kimura, T.;

Takeuchi, K.; Fukuyo, E.; Yanagi, K. Chem. Lett. 1992, 1771.

(58) Grob, C. A.; Wittwer, G.; Rao, K. R. Helv. Chim. Acta 1985, 68, 651.

(59) Grob, C. A.; Wang, G.; Yang, C. Tetrahedron Lett. 1987, 28, 1247.

(60) Hirsl-Starcevic, S.; Majerski, Z. J. Org. Chem. 1982, 47, 2520.

Note that this carbene has a singlet groundstate: Bally, T.;

Matsinger, S.; Truttmann, L.; Platz, M. S.; Morgan, S. Angew.

Chem., Int. Ed. Engl. 1994, 33, 1964.

(61) le Noble, W. J.; Chiou, D.-M.; Okaya, Y. J. Am. Chem. Soc. 1978, 100, 7743.

(62) le Noble, W. J.; Tatsukami, Y.; Morris, H. F. J. Am. Chem. Soc.

1970, 92, 5681.

(63) le Noble, W. J. J. Am. Chem. Soc. 1965, 87, 3515.

(64) Basak, S.; Srivastava, S.; le Noble W. J. J. Am. Chem. Soc. 1981, 103, 4638. Basak, S.; Srivastava, S.; le Noble W. J. J. Org. Chem.

1987, 52, 5095.

(65) le Noble, W. J.; Chiou, D.-M.; Okaya, Y. J. Am. Chem. Soc. 1979, 101, 3244.

(66) Anh, N. T.; Eisenstein, O. Tetrahedron Lett. 1976, 155.

(67) Cieplak, A. S. J. Am. Chem. Soc. 1981, 103, 4540.

(68) Cherest, M.; Felkin, H. Tetrahedron Lett. 1968, 2205.

(69) We take parenthetic note here of the many modifiers that have been introduced for the concept of hyperconjugation: positive, neutral, negative (which includes but is not limited to the anomeric effects (both exo and endo), reverse and anionic, not to mention no-bond resonance, and the myriad of terms intro-duced during the “carbonium ion controversy”. Although the energetics of the various manifestations of electron delocalization can differ greatly from case to case, we feel that it is not always profitable to draw so many distinctions. However, we do use the terms Anh-, Felkin-, and Cieplak models here (even though all three revolve about hyperconjugative interactions) because the first two of these assume distortions in the transition state which are critical to their success in accounting for cyclohexanone stereochemistry. See (a) Booth, H.; Khedhair, K. A. J. Chem.

Soc., Chem. Commun. 1985, 467. (b) Schleyer, P. v. R.; Jemmis, E. D.; Spitznagel, G. W. J. Am. Chem. Soc. 1985, 107, 6393. (c) Forsyth, D. A.; Yang, J.-R. J. Am. Chem. Soc. 1986, 108, 2157.

(d) Fuchs, B.; Ellencweig, A.; Tartakovsky, E.; Aped, P. Angew.

Chem., Int. Ed. Engl. 1986, 25, 287. (e) Dixon, D. A.; Fukunaga, T.; Smart, B. E. J. Am. Chem. Soc. 1986, 108, 4027. (f) Rahman, M. M.; Lemal, D. M.; Dailey, W. P. J. Am. Chem. Soc. 1988, 110, 1964. (g) Farnham, W. B.; Dixon, D. A.; Calabrese, J. C. J.

Am. Chem. Soc. 1988, 110, 2607. (h) Laube, T.; Ha, T.-K. J. Am.

Chem. Soc. 1988, 110, 5511. (i) Juaristi, E.; Cuevas, G. Tetra-hedron 1992, 48, 5019. (j) Lambert, J. B.; Singer, R. A. J. Am.

Chem. Soc. 1992, 114, 10246. (k) Wiberg, K. B.; Rablen, P. R. J.

Am. Chem. Soc. 1993, 115, 614. (l) Koppel, I. A.; Pihl, V.; Koppel, J.; Anvia, F.; Taft, R. W. J. Am. Chem. Soc. 1994, 116, 8654.

(m) Perrin, C. L. Tetrahedron 1995, 51, 11901.

(70) Lantvoev, V. I. J. Org. Chem. USSR (Engl. Transl.) 1980, 16, 1409.

(71) Adcock, W.; Trout, N. A. J. Org. Chem. 1991, 56, 3229.

(72) Li, H.; le Noble, W. J. Tetrahedron Lett. 1990, 31, 4391.

(73) Song, I. H.; le Noble, W. J. J. Org. Chem. 1994, 59, 58.

(79) le Noble, W. J.; Srivastava, S.; Cheung, C. K. J. Org. Chem. 1983, 48, 1099.

(80) Jones, C. D.; Kaselj, M.; Salvatore, R. N.; le Noble, W. J. J. Org.

Chem. 1998, 63, 2758. See also Hutchins, R. O.; Su, W. Y.;

Sivakumar, R.; Cistone, F.; Stercho, Y. P. J. Org. Chem. 1983, 48, 3412. Reetz, M. T.; Zhu, A.-C.; Hutchins, R. O.; Hutchins, M. K. Org. Prep. Proc. 1994, 26, 195. Hu¨ llmann, M.; Masse, M.;

Berger, S.; Rademacher, P.; Heymanns, J. Am. Chem. Soc. 1986, 108, 2405.

(81) Laube, T.; Stilz, H. U. J. Am. Chem. Soc. 1987, 109, 5876.

(82) Hahn, J. M.; le Noble. W. J. J. Am. Chem. Soc. 1992, 114, 1916.

For a computational study of this system, see Coxon, J. M.;

Houk, K. N.; Luibrand, R. T. J. Org. Chem. 1995, 60, 418.

(83) Senda, Y.; Morita, M.; Itoh, H. J. Chem. Soc., Perkin Trans. 2 1996, 221.

(84) (a) Kurkutova, E. N.; Goncharov, A. V.; Zefirov, N. S.; Palyulin, V. A. J. Struct. Chem. Engl. Transl. 1976, 17, 591. (b) McCabe, P. H.; Milne, N. J.; Sim, G. A. Acta Crystallogr. 1989, C45, 114.

(c) Goncharov, A. V.; Panov, V. N.; Maleev, A. V.; Potekhin, K.

A.; Kurkutova, E. N.; Struchkov, Y. T.; Palyulin, V. A.; Zefirov, N. S. Doklady Akad. Nauk SSSR (Engl. Transl.) 1991, 318, 148.

(85) Gonikberg, E. M.; le Noble, W. J. J. Org. Chem. 1995, 60, 7751.

(86) Kaselj, M.; Gonikberg, E. M.; le Noble, W. J. J. Org. Chem. 1998, 63, 3218.

(87) Kaselj, M.; le Noble, W. J. J. Org. Chem. 1996, 61, 4157.

(88) Subramaniam, R.; Fort, R. C. J. Org. Chem. 1984, 49, 2891.

(89) Schleyer, P. v. R. J. Am. Chem. Soc. 1967, 89, 699, 701.

(90) Mehta, G.; Khan, F. A. J. Am. Chem. Soc. 1990, 112, 6140.

(91) Mehta, G.; Praveen, M. Tetrahedron Lett. 1992, 33, 1759.

(92) Mehta, G.; Khan, F. A.; Adcock, W. J. Chem. Soc., Chem.

Commun. 1995, 2189.

(93) Mehta, G.; Khan, F. A.; Mohal, N.; Namboothiri, I. N. N.;

Kalyanaraman, P.; Chandrasekhar, J. J. Chem. Soc., Perkin Trans. 1 1996, 2665.

(94) Mehta, G.; Khan, F. A.; Ganguly, B.; Chandrasekhar, J. J. Chem.

Soc., Perkin Trans. 2 1994, 2275.

(95) Gassman, P. G.; Schaffhausen, J. G.; Raynolds, P. W. J. Am.

Chem. Soc. 1982, 104, 6408.

(96) Bodepudi, V. R.; le Noble, W. J. J. Org. Chem. 1994, 59, 3265.

For references to the protonation stereochemistry of cyclohex-anone enolates, see Zimmerman, H. E. Acc. Chem. Res. 1987, 20, 263.

(97) Li, H.; Mehta, G.; Padma, S.; le Noble, W. J. J. Org. Chem. 1991, 56, 2006.

(98) Mehta, G.; Khan, F. A. Tetrahedron Lett. 1992, 33, 3065. See also Okada, K.; Tomita, S.; Oda, M. Tetrahedron Lett. 1986, 27, 2645.

(99) Kumar, A. V.; Venkatesan, K.; Ganguly, B.; Chandrasekhar, J.;

Khan, F. A.; Mehta, G. Tetrahedron Lett. 1992, 33, 3069.

(100) Mehta, G.; Khan, F. A.; Lakshmi, A. K. Tetrahedron Lett. 1992, 33, 7977.

(101) Berg, U.; Butkus, E.; Stoncius, A. J. Chem. Soc., Perkin Trans.

2 1995, 97.

(102) Okada, K.; Tomita, S.; Oda, M. Tetrahedron Lett. 1986, 27, 2645.

(103) Liu, P.-Y.; Burnell, D. J. J. Chem. Soc., Chem. Commun. 1994, 1183.

(104) Halterman, R. L.; McEvoy, M. A. J. Am. Chem. Soc. 1990, 112, 6690. Similar studies employing neighboring oxygen and sulfur atoms rather than p-substituted phenyl rings were recently reported: Dimitroff, M.; Fallis, A. G. Tetrahedron Lett. 1998, 39, 2527 and 2531.

(105) The same outcome has been anticipated by Houk, though not necessarily on the same grounds. See Caramella, P.; Rondan, N. G.; Paddon-Row, M. N.; Houk, K. N. J. Am. Chem. Soc. 1981, 103, 2438.

(106) Srivastava, S.; le Noble, W. J. J. Am. Chem. Soc. 1987, 109, 5874.

(107) Johnson, C. R.; Tait, B. D.; Cieplak, A. S. J. Am. Chem. Soc.

1987, 109, 5875.

(108) Burgess, K.; van der Donk, W. A.; Jarstfer, M. B.; Ohlmeyer, M. J. J. Am. Chem. Soc. 1991, 113, 6139. See also Fray, M. J.;

Thomas, E. J.; Wallis, J. J. Chem. Soc., Perkin Trans. 1 1983, 395.

(109) Bailey, P. D.; Higgins, S. D.; Ridyard, C. H.; Roberts, S. M.;

Rosair, G. M.; Whittaker, R. A.; Willetts, A. J. J. Chem. Soc., Chem. Commun. 1996, 1833.

(110) Davis, C. R.; Johnson, R. A.; Cialdella, J. I.; Liggett, W. F.;

Mizsak, S. A.; Han, F.; Marshall, V. P. J. Org. Chem. 1997, 62, 2252.

(111) Lau, J.; Gonikberg, E. M.; Hung, J.-t.; le Noble, W. J. J. Am.

Chem. Soc. 1995, 117, 11421.

(112) Duddeck, H.; Islam, M. R. J. Fluorine Chem. 1984, 25, 371.

(113) Hoffmann, R. W.; Hauel, N.; Landmann, B. Chem. Ber. 1983, 116, 389.

(114) Mehta, G.; Khan, F. A. J. Chem. Soc., Chem. Commun. 1991, 18.

(115) Mehta, G.; Khan, F. A.; Gadre, S. R.; Shirsat, R. N.; Ganguly, B.; Chandrasekhar, J. Angew. Chem., Int. Ed. Engl. 1994, 33, 1390.

(116) Mehta, G.; Gunasekaran, G.; Gadre, S. R.; Shirsat, R. N.;

Ganguly, B.; Chandrasekhar, J. J. Org. Chem. 1994, 59, 1953.

(117) (a) Tsuji, M.; Ohwada, T.; Shudo, K. Tetrahedron Lett. 1997, 38, 6693. (b) Ohwada, T.; Okamoto, I.; Haga, N.; Shudo, K. J. Org.

Chem. 1994, 59, 3975.

(118) Burdisso, M.; Gandolfi, R.; Rastelli, A. Tetrahedron Lett. 1991, 32, 2659.

(119) Malpass, J. R.; Walker, M. P. J. Chem. Soc., Chem. Commun.

1979, 585.

(120) Davies, J. W.; Durrant, M. L.; Walker, M. P.; Malpass, J. R.

Tetrahedron 1992, 48, 4379.

(121) Ohwada, T.; Achiwa, T.; Okamoto, I.; Shudo, K.; Yamaguchi, K.

Tetrahedron Lett. 1998, 39, 865.

(122) Halterman, R. L.; McEvoy, M. A. J. Am. Chem. Soc. 1992, 114, 980.

(123) Halterman, R. L.; McEvoy, M. A. Tetrahedron Lett. 1992, 33, 753.

(124) Jones, G. R.; Vogel, P. J. Chem. Soc., Chem. Commun. 1993, 769. See also (a) Gandolfi, R.; Tonoletti, G.; Rastelli, A.; Bagatti, M. J. Org. Chem. 1993, 58, 6038. (b) Gandolfi, R.; Amade, M.

S.; Rastelli, A.; Bagatti, M. Tetrahedron Lett. 1996, 37, 1321.

(125) Ohwada, T.; Okamoto, I.; Haga, N.; Shudo, K. J. Org. Chem.

1994, 59, 3975.

(126) Ohwada, T.; Uchiyama, M.; Tsuji, M.; Okamoto, I.; Shudo, K.

Chem. Pharm. Bull. 1996, 44, 296.

(127) Mohamadi has reported that the epoxidation of 3-cyclopentenyl-and 3-cyclohexenyl-N-i-propylacetamide with MCPBA gives the contrasteric syn product in a 20:1 ratio; see Mohamadi, F.; Spees, M. M. Tetrahedron Lett. 1989, 30, 1309.

(128) Kira, M.; Akiyama, M.; Ichinose, M.; Sakurai, H. J. Am. Chem.

Soc. 1989, 111, 8256.

(129) Bodepudi, V. R.; le Noble, W. J. J. Org. Chem. 1991, 56, 2001.

(130) Adcock, W.; Clark, C. I.; Trout, N. A. Tetrahedron Lett. 1994, 35, 297.

(131) Bartlett, P. D.; McBride, J. M. J. Am. Chem. Soc. 1965, 87, 1727.

(132) Gonikberg, E. M.; Picart, F.; le Noble, W. J. J. Org. Chem. 1996, 61, 9588; 1997, 62, 4885.

(133) Swansburg, S.; Janz, K.; Jocys, G.; Pincock, A.; Pincock, J. Can.

J. Chem. 1998, 76, 35.

(134) Li, H.; Silver, J. E.; Watson, W. H.; Kashyap, R. P.; le Noble, W.

J. J. Org. Chem. 1991, 56, 5932.

(135) Coxon, J. M.; McDonald, D. Q. Tetrahedron Lett. 1992, 33, 651.

(136) Chung, W.-S.; Tsai, T.-L.; Ho, C.-C.; Chiang, M. Y. N.; le Noble, W. J. J. Org. Chem. 1997, 62, 4672.

(137) Chung, W.-S.; Turro, N. J.; Srivastava, S.; Li, H.; le Noble, W.

J. J. Am. Chem. Soc. 1988, 110, 7882.

(138) (a) Chung, W.-S.; Turro, N. J.; Srivastava, S.; le Noble, W. J. J.

Org. Chem. 1991, 56, 5020. (b) Chung, W.-S.; Ho, C.-C. J. Chem.

Soc., Perkin Trans. 2 1997, 553.

(139) Chung, W.-S.; Liu, Y.-D.; Wang, N.-J. J. Chem. Soc., Perkin Trans. 2 1995, 581.

(140) Chung, W.-S.; Turro, N. J.; Silver, J.; le Noble, W. J. J. Am.

Chem. Soc. 1990, 112, 1202.

(141) Chung, W.-S.; Wang, N.-J.; Liu, Y.-D.; Leu, Y.-J.; Chiang, M. Y.

J. Chem. Soc., Perkin Trans. 2 1995, 307.

(142) Entrena, A.; Jaime, C. J. Org. Chem. 1997, 62, 5923.

(143) Hummelen, J. C. Ph.D. Thesis, University of Groningen, 1985, 76 ff.

(144) Nelsen, S. F.; Kapp, D. L.; Akaba, R.; Evans, D. H. J. Am. Chem.

Soc. 1986, 108, 6863.

(145) (a) Gerson, F.; Lopez, J.; Nelsen, S. F.; Akaba, R. J. Am. Chem.

Soc. 1981, 103, 6716. (b) Clark, T.; Teasley, M. F.; Nelsen, S.

F.; Wynberg, H. J. Am. Chem. Soc. 1987, 109, 5719.

(146) Nelsen, S. F.; Klein, S. J.; Trieber, D. A.; Ismagilov, R. F.; Powell, D. R. J. Org. Chem. 1997, 62, 6539.

(147) Adam, W.; Bronstein, I.; Edwards, B.; Engel, T.; Reinhardt, D.;

Schneider, F. W.; Trofimov, A. V.; Vasil’ev, R. F. J. Am. Chem.

Soc. 1996, 118, 10400.

(148) Williamson, K.; Hsu, Y. L. J. Am. Chem. Soc. 1970, 92, 7385.

See also Houk, K. N.; Mueller, P. H.; Wu, Y.-D.; Mazzochi, P.

H.; Shook, D.; Khachik, F. Tetrahedron Lett. 1990, 31, 7285 and Burry, L. C.; Bridson, J. L.; Burnell, D. J. J. Org. Chem. 1995, 60, 5931.

(149) Breslow, R.; Hoffman, J. M.; Perchonock, C. Tetrahedron Lett.

1973, 38, 3723. Closely related cases have been described, see (a) Ishida, M.; Aoyama, T.; Baniya, Y.; Yamabe, S.; Kato, S.;

Inagaki, S. Bull. Chem. Soc. Jpn. 1993, 66, 3430. (b) Poirier, R.

A.; Pye, C. C.; Xidos, J. D.; Burnell, D. J. J. Org. Chem. 1995, 60, 2328.

(150) Macaulay, J. B.; Fallis, A. G. J. Am. Chem. Soc. 1988, 110, 4074.

(151) Macaulay, J. B.; Fallis, A. G. J. Am. Chem. Soc. 1990, 112, 1136.

See also Ishida, M.; Banya, Y.; Inagaki, S.; Kato, S. J. Am. Chem.

Soc. 1990, 112, 8980.

(152) Naperstkow, A. M.; Macaulay, J. B.; Newlands, M. J.; Fallis, A.

G. Tetrahedron Lett. 1989, 30, 5077.

(153) (a) Ishida, M.; Aoyama, T.; Beniya, Y.; Yamabe, S.; Kato, S.;

Inagaki, S. Bull. Chem. Soc. Jpn. 1993, 66, 3430. (b) Ishida, M.;

Tomohiro, S.; Shimizu, M.; Ingaki, S. Chem. Lett. 1995, 739.

(154) Froese, R. D. J.; Organ, M. G.; Goddard, J. D.; Stack, T. D. P.;

Trost, B. M. J. Am. Chem. Soc. 1995, 117, 10931.

(155) (a) Wellman, M. A.; Bury, L. C.; Letourneau, J. E.; Bridson, J.

N.; Miller, D. O.; Burnell, D. J. J. Org. Chem. 1997, 62, 939. (b) Xidos, J. D.; Poirier, R. A.; Pye, C. C.; Burnell, D. J. J. Org.

Chem. 1998, 63, 105.

(156) (a) Burdisso, M.; Gandolfi, R.; Lucchi, M.; Rastelli, A. J. Org.

Chem. 1988, 53, 2125. (b) Burdisso, M.; Gandolfi, R.; Pavarello, P.; Rastelli, A. J. Chem. Soc., Perkin Trans. 2 1988, 753. (c) Burdisso, M.; Gamba, A.; Gandolfi, R.; Toma, L.; Rastelli, A.;

Schiatti, E. J. Org. Chem. 1990, 55, 3311. (d) Rastelli, A.;

Burdisso, M.; Gandolfi, R. J. Phys. Org. Chem. 1990, 3, 159.

(157) (a) Franck-Neumann, M. Angew. Chem., Int. Ed. Engl. 1969, 210. (b) Landen, H.; Margraf, B.; Martin, H.-D.; Steigel, A.

Tetrahedron Lett. 1988, 29, 6597. (c) Hake, H.; Landen, H.;

Martin, H.-D.; Mayer, B.; Steigel, B. Tetrahedron Lett. 1988, 29, 6601.

(158) Paquette, L. A.; Klinger, F. J. Org. Chem. 1982, 47, 272.

(159) Coxon, J. M.; O’Connell, M. J.; Steel, P. J. J. Org. Chem. 1987, 52, 4726.

(160) Pandey, B.; Zope, U. R.; Ayyangar, N. R. Synth. Commun. 1989, 19, 585.

(161) Marchand, A. P.; Shukla, R.; Burritt, A.; Bott, S. G. Tetrahedron 1995, 51, 8733.

(162) Coxon, J. M.; Fong, S. T.; McDonald, D. Q.; Steel, P. J.

Tetrahedron Lett. 1993, 34, 163. See also Mefta, G.; Uma, R.

Tetrahedron Lett. 1995, 36, 4873.

(163) Mehta, G.; Subramanian, U. R.; Pramanik, A.; Chandrasekhar, J.; Nethaji, M. J. Chem. Soc., Chem. Commun. 1995, 677.

(164) Halterman, R. L.; McCarthy, B. A.; McEvoy, M. A. J. Org. Chem.

1992, 57, 5585.

(165) (a) Gillard, J. R.; Burnell, D. J. J. Chem. Soc., Chem. Commun.

1989, 1439. (b) Gillard, J. R.; Burnell, D. J. Can. J. Chem. 1992, 70, 1296.

(166) Gillard, J. R.; Newlands, M. J.; Bridson, J. N.; Burnell, D. J.

Can. J. Chem. 1991, 69, 1337.

(167) Paquette, L. A.; Branan, B. M.; Rogers, R. D.; Bond, A. H.; Lange, H.; Gleiter, R. J. Am. Chem. Soc. 1995, 117, 5992.

(168) Bertsch, A.; Grimme, W.; Reinhardt, G.; Rose, H.; Warner, P.

M. J. Am. Chem. Soc. 1988, 110, 5112.

(169) Mukherjee, A.; Wu, Q.; le Noble, W. J. J. Org. Chem. 1994, 59, 3270.

(170) Lin, M.-h.; le Noble, W. J. J. Org. Chem. 1989, 54, 997.

(171) Lin, M.-h.; Watson, W. H.; Kashyap, R. P.; le Noble, W. J. J.

Org. Chem. 1990, 55, 3597.

(172) Mukherjee, A.; Schulman, E. M.; le Noble, W. J. J. Org. Chem.

1992, 57, 3120.

(173) Mukherjee, A. K.; le Noble, W. J. J. Org. Chem. 1993, 58, 7955.

(174) Johnson, C. R.; McCants, D. J. Am. Chem. Soc. 1965, 53, 5155.

(175) Mukherjee, A. K.; Venter, E. M. M.; le Noble, W. J.; Watson, W.

H.; Kashyap, R. P. Tetrahedron Lett. 1992, 33, 3837.

(176) Lin, M.-h.; Boyd, M. K.; le Noble, W. J. J. Am. Chem. Soc. 1989, 111, 8746. As pointed out by a referee, this change in stereo-chemistry is analogous to the switch from anti to syn attack by nucleophiles in SN2 and SN2′ displacements; see March, J.

Advanced Organic Chemistry, 4th ed.; Wiley: New York, 1992;

p 329 and literature quoted therein. The epimers 155 were formed as a 50/50 mixture in the reaction of methyllithium with the precusor ketone: no face selectivity was seen in that reaction.

(177) Boyd, M. K.; Lin, M.-h.; le Noble, W. J. J. Org. Chem. 1993, 58, 5541.

(178) Fukunishi, K.; Kohno, A.; Kojo, S. J. Org. Chem. 1988, 53, 4369.

(179) Dauben, W. G.; Fonken, G. J.; Noyce, D. C. J. Am. Chem. Soc.

1956, 78, 2579.

(180) Yadav, V. K.; Jeyaraj, D. A. J. Org. Chem. 1998, 63, 3474.

(181) For some recent examples, see (a) Wong, S. S.; Paddon-Row, M.

N. J. Chem. Soc., Chem. Commun. 1991, 327. (b) Chen, X.;

Hortelano, E. R.; Eliel, E. L.; Frye, S. E. J. Am. Chem. Soc. 1992, 114, 1778. (c) Reetz, M. T.; Acc. Chem. Res. 1993, 26, 462. (d) Paquette, L. A.; Lobben, P. C. J. Am. Chem. Soc. 1996, 118, 1917.

(e) Paquette, L. A.; Mitzel, T. M. J. Am. Chem. Soc. 1996, 118, 1931. (f) Zhang, H.-C.; Harris, B. D.; Maryanoff, C. A.; Mary-anoff, B. E. Tetrahedron Lett. 1996, 37, 7897.

(182) Their near-spherical shape renders adamantanones difficult targets for X-ray diffraction studies. However, 5-p-nitropheny-ladamantan-2-one has been shown by this means to have a planar carbonyl group; the carbonyl bridge leans slightly (by

1.5°) in the direction of C-5. See Tafeenko, V. A.; Prozorovskii, A. E.; Kovalev, V. V.; Knyazeva, I. V. J. Struct. Chem. Engl.

Transl. 1987, 28, 155. Planar carbonyl carbon is also observed in compound 44 (ref 84b) and in the tetracyclic 4,9-bridged adamantanone; see Inayama, S.; Singh, A. K.; Kawamata, T.;

Iitaka, Y. Tetrahedron Lett. 1979, 1125.

(183) Gung, B. W.; Wolf, M. A. J. Org. Chem. 1996, 61, 232. However, see also Rondan, N. G.; Paddon-Row, M. N.; Caramella, P.; Houk, K. N. J. Am. Chem. Soc. 1981, 103, 2436.

(184) For some recent examples, see (a) Seebach, D.; Zimmermann, J.; Gysel, U.; Ziegler, R.; Ha, T.-K. J. Am. Chem. Soc. 1988, 110,

(184) For some recent examples, see (a) Seebach, D.; Zimmermann, J.; Gysel, U.; Ziegler, R.; Ha, T.-K. J. Am. Chem. Soc. 1988, 110,

相關文件