• 沒有找到結果。

Prodigiosin inhibits NF-κB signaling pathway in cancer cells

Chapter 4. Discussion

4.3. Prodigiosin inhibits NF-κB signaling pathway in cancer cells

Previous studies on prodigiosin associated with NF-κB signaling pathway were fo-cused on primary culture of immunocytes for demonstrating its immunosuppressive property (Mortellaro, Songia et al. 1999; Huh, Yim et al. 2007). However, there were no reports that prodigiosin inhibits the activation of NF-κB in cancer cells. The dose of prodigiosin in those immunosuppression studies was usually low to nanomolar scale. Compared to those studies, the dose used in this study was relatively high for demonstrating the NF-κB inhibitory effect (Fig. 9, Fig. 15). This different dose re-quired for NF-κB inhibitoin could be resulted from the differences in cell type since the inhibitory concentrations 50 (IC50) of MTT and MTS are consisted with other published results. Moreover, our results demonstrated that prodigiosin blocks the phosphorylation of IκBα, resulting in the inactivation of NF-κB signaling pathway (Fig. 4, Fig. 9, and Fig. 15). In addition, the EMSA data suggested that prodigiosin specifically inhibited the classical NF-κB signaling pathway. All these characteristics suggested that prodigiosin might be an IKKβ inhibitor.

4.4. Prodigiosin in combination with bortezomib exert synergistic cell toxicity in human multiple myeloma cells

Current chemotherapy seldom uses one drug alone. In most cases, doctor usually gives two or three chemodrugs for combination since most of cancers display drug resistance after a period of time. In this study, we demonstrated that prodigiosin is an effective agent as a chemotherapy candidate in multiple myeloma. In fact, our results suggested that prodigiosin induces growth inhibition and apoptosis in several other cancer types, including small cell lung cancer (SCLC) and none-small cell lung can-cer (NSCLC) (data not shown). Nevertheless, the TNFα induction system did not

38

work well in both of SCLC and NSCLC cell lines. Thus, we were unable to determine whether prodigiosin is an NF-κB inhibitor in the lung cancer cell line studies. The 26S proteasome inhibitor bortezomib, has exhibited good curative effect on multiple mye-loma. However, there were cases reported that some patients were resistance to bortezomib due to activation of the NF-κB pathway (Markovina, Callander et al.

2010). Additionally, the research suggested that bortezomib-induced apoptosis is not related to the repression of NF-κB activity. On the contrary, the studies revealed that bortezomib would activate NF-κB through classical pathway (Hideshima, Ikeda et al.

2009). The same group reported that an IKKβ inhibitor in combination with bortezomib overcame bortezomib resistance (Hideshima, Ikeda et al. 2009). In this thesis study, we demonstrated that prodigiosin suppressed the NF-κB activity induced by bortezomib in a human multiple myeloma cell line. This result supports our hy-pothesis that prodigiosin might be an IKKβ inhibitor.

For chemotherapy, doxorubicin is a common drug used in many types of cancers, including bladder, breast, lung, and multiple myeloma. It interacts with DNA by in-tercalation and inhibition of molecular biosynthesis; thus, it usually accompanies cardiotoxicity in higher dosage. Therefore, a combination with other chemodrugs is a good solution to reduce the dosage of doxorubicin. Our data showed that prodigiosin in combination with doxorubicin were not effective in treating multiple myeloma cells.

On the other hand, doxorubicin in combination with histone deacetylase inhibitor dis-played a synergistic effect (Sanchez, Shen et al. 2011).

39

Reference

Adachi, O., Kawai, T., Takeda, K., Matsumoto, M., Tsutsui, H., Sakagami, M., Nakanishi, K., and Akira, S. (1998). Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity 9, 143-150.

Aggarwal, B. B. (2003). Signalling pathways of the TNF superfamily: a double-edged sword. Nature reviews Immunology 3, 745-756.

Aggarwal, B. B., and Gehlot, P. (2009). Inflammation and cancer: how friendly is the relationship for cancer patients? Current opinion in pharmacology 9, 351-369.

Aggarwal, B. B., Vijayalekshmi, R. V., and Sung, B. (2009). Targeting inflammatory pathways for prevention and therapy of cancer: short-term friend, long-term foe.

Clinical cancer research : an official journal of the American Association for Cancer Research 15, 425-430.

Ahn, K. S., Sethi, G., and Aggarwal, B. B. (2007). Nuclear factor-kappa B: from clone to clinic. Current molecular medicine 7, 619-637.

Amado, N. G., Fonseca, B. F., Cerqueira, D. M., Neto, V. M., and Abreu, J. G. (2011).

Flavonoids: potential Wnt/beta-catenin signaling modulators in cancer. Life sciences 89, 545-554.

Anand, P., Kunnumakkara, A. B., Sundaram, C., Harikumar, K. B., Tharakan, S. T., Lai, O. S., Sung, B., and Aggarwal, B. B. (2008). Cancer is a preventable disease that requires major lifestyle changes. Pharmaceutical research 25, 2097-2116.

Annunziata, C. M., Davis, R. E., Demchenko, Y., Bellamy, W., Gabrea, A., Zhan, F., Lenz, G., Hanamura, I., Wright, G., Xiao, W., et al. (2007). Frequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myeloma. Cancer cell 12, 115-130.

Basseres, D. S., and Baldwin, A. S. (2006). Nuclear factor-kappaB and inhibitor of kappaB kinase pathways in oncogenic initiation and progression. Oncogene 25, 6817-6830.

Beg, A. A., Sha, W. C., Bronson, R. T., Ghosh, S., and Baltimore, D. (1995).

Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-kappa B. Nature 376, 167-170.

Bonizzi, G., and Karin, M. (2004). The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends in immunology 25, 280-288.

Cheng, G., and Xie, L. (2011). Parthenolide induces apoptosis and cell cycle arrest of

40

human 5637 bladder cancer cells in vitro. Molecules 16, 6758-6768.

Coussens, L. M., and Werb, Z. (2001). Inflammatory cells and cancer: think different!

The Journal of experimental medicine 193, F23-26.

D'Incalci, M., and Galmarini, C. M. (2010). A review of trabectedin (ET-743): a unique mechanism of action. Molecular cancer therapeutics 9, 2157-2163.

Dejardin, E., Droin, N. M., Delhase, M., Haas, E., Cao, Y., Makris, C., Li, Z. W., Karin, M., Ware, C. F., and Green, D. R. (2002). The lymphotoxin-beta receptor induces different patterns of gene expression via two NF-kappaB pathways.

Immunity 17, 525-535.

Dobrzanski, P., Ryseck, R. P., and Bravo, R. (1994). Differential interactions of Rel-NF-kappa B complexes with I kappa B alpha determine pools of constitutive and inducible NF-kappa B activity. The EMBO journal 13, 4608-4616.

Dolgin, E. (2011). Stem cells: Transplants on trial. Nature 480, S46-47.

Ghosh, S., and Karin, M. (2002). Missing pieces in the NF-kappaB puzzle. Cell 109 Suppl, S81-96.

Ghosh, S., May, M. J., and Kopp, E. B. (1998). NF-kappa B and Rel proteins:

evolutionarily conserved mediators of immune responses. Annual review of immunology 16, 225-260.

Glaser, K. B. (2007). HDAC inhibitors: clinical update and mechanism-based potential. Biochemical pharmacology 74, 659-671.

Gordaliza, M. (2007). Natural products as leads to anticancer drugs. Clinical &

translational oncology : official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico 9, 767-776.

Guzman, E. A., Johnson, J. D., Linley, P. A., Gunasekera, S. E., and Wright, A. E.

(2011). A novel activity from an old compound: Manzamine A reduces the metastatic potential of AsPC-1 pancreatic cancer cells and sensitizes them to TRAIL-induced apoptosis. Investigational new drugs 29, 777-785.

Han, S. B., Kim, H. M., Kim, Y. H., Lee, C. W., Jang, E. S., Son, K. H., Kim, S. U., and Kim, Y. K. (1998). T-cell specific immunosuppression by prodigiosin isolated from Serratia marcescens. International journal of immunopharmacology 20, 1-13.

Hatada, E. N., Nieters, A., Wulczyn, F. G., Naumann, M., Meyer, R., Nucifora, G., McKeithan, T. W., and Scheidereit, C. (1992). The ankyrin repeat domains of the NF-kappa B precursor p105 and the protooncogene bcl-3 act as specific inhibitors

41

of NF-kappa B DNA binding. Proceedings of the National Academy of Sciences of the United States of America 89, 2489-2493.

Hayden, M. S., and Ghosh, S. (2004). Signaling to NF-kappaB. Genes & development 18, 2195-2224.

Hehner, S. P., Hofmann, T. G., Droge, W., and Schmitz, M. L. (1999). The antiinflammatory sesquiterpene lactone parthenolide inhibits NF-kappa B by targeting the I kappa B kinase complex. J Immunol 163, 5617-5623.

Heider, U., Hofbauer, L. C., Zavrski, I., Kaiser, M., Jakob, C., and Sezer, O. (2005).

Novel aspects of osteoclast activation and osteoblast inhibition in myeloma bone disease. Biochemical and biophysical research communications 338, 687-693.

Hideshima, T., Ikeda, H., Chauhan, D., Okawa, Y., Raje, N., Podar, K., Mitsiades, C., Munshi, N. C., Richardson, P. G., Carrasco, R. D., and Anderson, K. C. (2009).

Bortezomib induces canonical nuclear factor-kappaB activation in multiple myeloma cells. Blood 114, 1046-1052.

Hideshima, T., Mitsiades, C., Tonon, G., Richardson, P. G., and Anderson, K. C.

(2007). Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets. Nature reviews Cancer 7, 585-598.

Hideshima, T., Neri, P., Tassone, P., Yasui, H., Ishitsuka, K., Raje, N., Chauhan, D., NF-kappaB/Rel transcription factors defines functional specificities. The EMBO journal 22, 5530-5539.

Hoffmann, A., Levchenko, A., Scott, M. L., and Baltimore, D. (2002). The IkappaB-NF-kappaB signaling module: temporal control and selective gene activation. Science 298, 1241-1245.

Hsieh, H. Y., Shieh, J. J., Chen, C. J., Pan, M. Y., Yang, S. Y., Lin, S. C., Chang, J. S., Lee, A. Y., and Chang, C. C. (2012). Prodigiosin down-regulates SKP2 to induce p27(KIP1) stabilization and antiproliferation in human lung adenocarcinoma cells.

British journal of pharmacology 166, 2095-2108.

Huang, T. T., Kudo, N., Yoshida, M., and Miyamoto, S. (2000). A nuclear export

42

signal in the N-terminal regulatory domain of IkappaBalpha controls cytoplasmic localization of inactive NF-kappaB/IkappaBalpha complexes. Proceedings of the National Academy of Sciences of the United States of America 97, 1014-1019.

Huh, J. E., Yim, J. H., Lee, H. K., Moon, E. Y., Rhee, D. K., and Pyo, S. (2007).

Prodigiosin isolated from Hahella chejuensis suppresses lipopolysaccharide-induced NO production by inhibiting p38 MAPK, JNK and NF-kappaB activation in murine peritoneal macrophages. International immunopharmacology 7, 1825-1833.

Huynh, Q. K., Boddupalli, H., Rouw, S. A., Koboldt, C. M., Hall, T., Sommers, C., Hauser, S. D., Pierce, J. L., Combs, R. G., Reitz, B. A., et al. (2000).

Characterization of the recombinant IKK1/IKK2 heterodimer. Mechanisms regulating kinase activity. The Journal of biological chemistry 275, 25883-25891.

Hwang, I., Choi, Y. S., Jeon, M. Y., and Jeong, S. (2010). NF-kappaB p65 represses beta-catenin-activated transcription of cyclin D1. Biochemical and biophysical research communications 403, 79-84.

Jemal, A., Siegel, R., Ward, E., Murray, T., Xu, J., and Thun, M. J. (2007). Cancer statistics, 2007. CA: a cancer journal for clinicians 57, 43-66.

Johnson, C., Van Antwerp, D., and Hope, T. J. (1999). An N-terminal nuclear export signal is required for the nucleocytoplasmic shuttling of IkappaBalpha. The EMBO journal 18, 6682-6693.

Jung, H. J., Chen, Z., Fayad, L., Wang, M., Romaguera, J., Kwak, L. W., and McCarty, N. (2012). Bortezomib-resistant nuclear factor kappaB expression in stem-like cells in mantle cell lymphoma. Experimental hematology 40, 107-118 e102.

Karin, M., and Ben-Neriah, Y. (2000). Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annual review of immunology 18, 621-663.

Kawai, T., Adachi, O., Ogawa, T., Takeda, K., and Akira, S. (1999). Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 11, 115-122.

Keats, J. J., Fonseca, R., Chesi, M., Schop, R., Baker, A., Chng, W. J., Van Wier, S., Tiedemann, R., Shi, C. X., Sebag, M., et al. (2007). Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma. Cancer cell 12, 131-144.

Khoshnan, A., Bae, D., Tindell, C. A., and Nel, A. E. (2000). The physical association of protein kinase C theta with a lipid raft-associated inhibitor of kappa B factor

43

kinase (IKK) complex plays a role in the activation of the NF-kappa B cascade by TCR and CD28. J Immunol 165, 6933-6940.

Klement, J. F., Rice, N. R., Car, B. D., Abbondanzo, S. J., Powers, G. D., Bhatt, P. H., Chen, C. H., Rosen, C. A., and Stewart, C. L. (1996). IkappaBalpha deficiency results in a sustained NF-kappaB response and severe widespread dermatitis in mice. Molecular and cellular biology 16, 2341-2349.

Lee, J. S., Kim, Y. S., Park, S., Kim, J., Kang, S. J., Lee, M. H., Ryu, S., Choi, J. M., Oh, T. K., and Yoon, J. H. (2011). Exceptional production of both prodigiosin and cycloprodigiosin as major metabolic constituents by a novel marine bacterium, Zooshikella rubidus S1-1. Applied and environmental microbiology 77, 4967-4973.

Lernbecher, T., Kistler, B., and Wirth, T. (1994). Two distinct mechanisms contribute to the constitutive activation of RelB in lymphoid cells. The EMBO journal 13, 4060-4069.

Li, C. J., Guo, S. F., and Shi, T. M. (2012). Culture supernatants of breast cancer cell line MDA-MB-231 treated with parthenolide inhibit the proliferation, migration, and lumen formation capacity of human umbilical vein endothelial cells. Chinese medical journal 125, 2195-2199.

Li, Q., Van Antwerp, D., Mercurio, F., Lee, K. F., and Verma, I. M. (1999a). Severe liver degeneration in mice lacking the IkappaB kinase 2 gene. Science 284, 321-325.

Li, Z. W., Chu, W., Hu, Y., Delhase, M., Deerinck, T., Ellisman, M., Johnson, R., and Karin, M. (1999b). The IKKbeta subunit of IkappaB kinase (IKK) is essential for nuclear factor kappaB activation and prevention of apoptosis. The Journal of experimental medicine 189, 1839-1845.

Liang, M. C., Bardhan, S., Li, C., Pace, E. A., Porco, J. A., Jr., and Gilmore, T. D.

(2003). Jesterone dimer, a synthetic derivative of the fungal metabolite jesterone, blocks activation of transcription factor nuclear factor kappaB by inhibiting the inhibitor of kappaB kinase. Molecular pharmacology 64, 123-131.

Liang, M. C., Bardhan, S., Pace, E. A., Rosman, D., Beutler, J. A., Porco, J. A., Jr., and Gilmore, T. D. (2006). Inhibition of transcription factor NF-kappaB signaling proteins IKKbeta and p65 through specific cysteine residues by epoxyquinone A monomer: correlation with its anti-cancer cell growth activity. Biochemical

44

pharmacology 71, 634-645.

Lichstein, H. C., and Van De Sand, V. F. (1946). The Antibiotic Activity of Violacein, Prodigiosin, and Phthiocol. Journal of bacteriology 52, 145-146.

Llagostera, E., Soto-Cerrato, V., Montaner, B., and Perez-Tomas, R. (2003).

Prodigiosin induces apoptosis by acting on mitochondria in human lung cancer cells. Annals of the New York Academy of Sciences 1010, 178-181.

Los, M., Roodhart, J. M., and Voest, E. E. (2007). Target practice: lessons from phase III trials with bevacizumab and vatalanib in the treatment of advanced colorectal cancer. The oncologist 12, 443-450.

Magae, J., Yamashita, M., and Nagai, K. (1993). Suppression of alloantigen presentation by prodigiosin, a T cell-specific immunosuppressant. Annals of the New York Academy of Sciences 685, 339-340.

Malek, S., Chen, Y., Huxford, T., and Ghosh, G. (2001). IkappaBbeta, but not IkappaBalpha, functions as a classical cytoplasmic inhibitor of NF-kappaB dimers by masking both NF-kappaB nuclear localization sequences in resting cells. The Journal of biological chemistry 276, 45225-45235.

Malek, S., Huang, D. B., Huxford, T., Ghosh, S., and Ghosh, G. (2003). X-ray crystal structure of an IkappaBbeta x NF-kappaB p65 homodimer complex. The Journal of biological chemistry 278, 23094-23100.

Markovina, S., Callander, N. S., O'Connor, S. L., Kim, J., Werndli, J. E., Raschko, M., Leith, C. P., Kahl, B. S., Kim, K., and Miyamoto, S. (2008). Bortezomib-resistant nuclear factor-kappaB activity in multiple myeloma cells. Molecular cancer research : MCR 6, 1356-1364.

Markovina, S., Callander, N. S., O'Connor, S. L., Xu, G., Shi, Y., Leith, C. P., Kim, K., Trivedi, P., Kim, J., Hematti, P., and Miyamoto, S. (2010). Bone marrow stromal cells from multiple myeloma patients uniquely induce bortezomib resistant NF-kappaB activity in myeloma cells. Molecular cancer 9, 176.

Meier, P., Finch, A., and Evan, G. (2000). Apoptosis in development. Nature 407, 796-801.

Messori, A., Maratea, D., Nozzoli, C., and Bosi, A. (2011). The role of bortezomib, thalidomide and lenalidomide in the management of multiple myeloma: an overview of clinical and economic information. PharmacoEconomics 29, 269-285.

Michels, J., Johnson, P. W., and Packham, G. (2005). Mcl-1. The international journal

45

of biochemistry & cell biology 37, 267-271.

Mimeault, M., Johansson, S. L., and Batra, S. K. (2012). Pathobiological implications of the expression of EGFR, pAkt, NF-kappaB and MIC-1 in prostate cancer stem cells and their progenies. PloS one 7, e31919.

Montaner, B., Castillo-Avila, W., Martinell, M., Ollinger, R., Aymami, J., Giralt, E., and Perez-Tomas, R. (2005). DNA interaction and dual topoisomerase I and II inhibition properties of the anti-tumor drug prodigiosin. Toxicological sciences : an official journal of the Society of Toxicology 85, 870-879.

Montaner, B., and Perez-Tomas, R. (2001). Prodigiosin-induced apoptosis in human colon cancer cells. Life sciences 68, 2025-2036.

Montaner, B., and Perez-Tomas, R. (2002). Prodigiosin induces caspase-9 and caspase-8 activation and cytochrome C release in Jurkat T cells. Annals of the New York Academy of Sciences 973, 246-249.

Moreaux, J., Veyrune, J. L., De Vos, J., and Klein, B. (2009). APRIL is overexpressed in cancer: link with tumor progression. BMC cancer 9, 83.

Mortellaro, A., Songia, S., Gnocchi, P., Ferrari, M., Fornasiero, C., D'Alessio, R., Isetta, A., Colotta, F., and Golay, J. (1999). New immunosuppressive drug PNU156804 blocks IL-2-dependent proliferation and NF-kappa B and AP-1 activation. J Immunol 162, 7102-7109.

Mukherjee, A. K., Basu, S., Sarkar, N., and Ghosh, A. C. (2001). Advances in cancer therapy with plant based natural products. Current medicinal chemistry 8, 1467-1486.

Nakamura, A., Nagai, K., Ando, K., and Tamura, G. (1986). Selective suppression by prodigiosin of the mitogenic response of murine splenocytes. The Journal of antibiotics 39, 1155-1159.

Nakano, H., Sakon, S., Koseki, H., Takemori, T., Tada, K., Matsumoto, M., Munechika, E., Sakai, T., Shirasawa, T., Akiba, H., et al. (1999). Targeted disruption of Traf5 gene causes defects in CD40- and CD27-mediated lymphocyte activation. Proceedings of the National Academy of Sciences of the United States of America 96, 9803-9808.

Newman, D. J., and Cragg, G. M. (2007). Natural products as sources of new drugs over the last 25 years. Journal of natural products 70, 461-477.

Noma, N., Simizu, S., Kambayashi, Y., Kabe, Y., Suematsu, M., and Umezawa, K.

46

(2012). Involvement of NF-kappaB-mediated expression of galectin-3-binding protein in TNF-alpha-induced breast cancer cell adhesion. Oncology reports 27, 2080-2084.

Oh, H., Jensen, P. R., Murphy, B. T., Fiorilla, C., Sullivan, J. F., Ramsey, T., and Fenical, W. (2010). Cryptosphaerolide, a cytotoxic Mcl-1 inhibitor from a marine-derived ascomycete related to the genus Cryptosphaeria. Journal of natural products 73, 998-1001.

Rao, P., Hayden, M. S., Long, M., Scott, M. L., West, A. P., Zhang, D., Oeckinghaus, A., Lynch, C., Hoffmann, A., Baltimore, D., and Ghosh, S. (2010). IkappaBbeta acts to inhibit and activate gene expression during the inflammatory response.

Nature 466, 1115-1119.

Richardson, P. G., Laubach, J. P., Schlossman, R. L., Ghobrial, I. M., Redman, K. C., McKenney, M., Warren, D., Noonan, K., Lunde, L., Doss, D., et al. (2012). The potential benefits of participating in early-phase clinical trials in multiple myeloma:

long-term remission in a patient with relapsed multiple myeloma treated with 90 cycles of lenalidomide and bortezomib. European journal of haematology 88, 446-449.

Rodriguez-Berriguete, G., Fraile, B., Paniagua, R., Aller, P., and Royuela, M. (2012).

Expression of NF-kappaB-related proteins and their modulation during TNF-alpha-provoked apoptosis in prostate cancer cells. The Prostate 72, 40-50.

Roodman, G. D. (2009). Pathogenesis of myeloma bone disease. Leukemia : official journal of the Leukemia Society of America, Leukemia Research Fund, UK 23, 435-441.

Ruland, J., and Mak, T. W. (2003). Transducing signals from antigen receptors to nuclear factor kappaB. Immunological reviews 193, 93-100.

Ryseck, R. P., Bull, P., Takamiya, M., Bours, V., Siebenlist, U., Dobrzanski, P., and Bravo, R. (1992). RelB, a new Rel family transcription activator that can interact with p50-NF-kappa B. Molecular and cellular biology 12, 674-684.

Sanchez, E., Shen, J., Steinberg, J., Li, M., Wang, C., Bonavida, B., Chen, H., Li, Z.

W., and Berenson, J. R. (2011). The histone deacetylase inhibitor LBH589 enhances the anti-myeloma effects of chemotherapy in vitro and in vivo. Leukemia research 35, 373-379.

Satoh, M., Oguro, R., Yamanaka, C., Takada, K., Matsuura, Y., Akiba, T., Aotsuka, N.,

47

Tani, Y., and Wakita, H. (2011). Clinical assessment of bortezomib for multiple myeloma in comparison with thalidomide. Journal of pharmacy & pharmaceutical sciences : a publication of the Canadian Society for Pharmaceutical Sciences, Societe canadienne des sciences pharmaceutiques 14, 78-89.

Schmidmaier, R., Baumann, P., Bumeder, I., Meinhardt, G., Straka, C., and Emmerich, B. (2007). First clinical experience with simvastatin to overcome drug resistance in refractory multiple myeloma. European journal of haematology 79, 240-243.

Schumacher, M., Kelkel, M., Dicato, M., and Diederich, M. (2011). A survey of marine natural compounds and their derivatives with anti-cancer activity reported in 2010. Molecules 16, 5629-5646.

Senftleben, U., Cao, Y., Xiao, G., Greten, F. R., Krahn, G., Bonizzi, G., Chen, Y., Hu, Y., Fong, A., Sun, S. C., and Karin, M. (2001a). Activation by IKKalpha of a second, evolutionary conserved, NF-kappa B signaling pathway. Science 293, 1495-1499.

Senftleben, U., Li, Z. W., Baud, V., and Karin, M. (2001b). IKKbeta is essential for protecting T cells from TNFalpha-induced apoptosis. Immunity 14, 217-230.

Sethi, G., Sung, B., and Aggarwal, B. B. (2008). Nuclear factor-kappaB activation:

from bench to bedside. Exp Biol Med (Maywood) 233, 21-31.

Sheehan, M., Wong, H. R., Hake, P. W., Malhotra, V., O'Connor, M., and Zingarelli, B.

(2002). Parthenolide, an inhibitor of the nuclear factor-kappaB pathway, ameliorates cardiovascular derangement and outcome in endotoxic shock in rodents. Molecular pharmacology 61, 953-963.

Silverman, N., and Maniatis, T. (2001). NF-kappaB signaling pathways in mammalian and insect innate immunity. Genes & development 15, 2321-2342.

Solan, N. J., Miyoshi, H., Carmona, E. M., Bren, G. D., and Paya, C. V. (2002). RelB cellular regulation and transcriptional activity are regulated by p100. The Journal of biological chemistry 277, 1405-1418.

Steel, G. G., and Peckham, M. J. (1979). Exploitable mechanisms in combined radiotherapy-chemotherapy: the concept of additivity. International journal of radiation oncology, biology, physics 5, 85-91.

Sun, D. D., Wang, W. Z., Mao, J. W., Mei, W. J., and Liu, J. (2012). Imidazo [4,5f][1,10] phenanthroline derivatives as inhibitor of c-myc gene expression in A549 cells via NF-kappaB pathway. Bioorganic & medicinal chemistry letters 22,

48 Annes, J., Petrzilka, D., Kupfer, A., Schwartzberg, P. L., and Littman, D. R. (2000).

PKC-theta is required for TCR-induced NF-kappaB activation in mature but not immature T lymphocytes. Nature 404, 402-407.

Tai, Y. T., Li, X. F., Breitkreutz, I., Song, W., Neri, P., Catley, L., Podar, K., Hideshima, T., Chauhan, D., Raje, N., et al. (2006). Role of B-cell-activating factor in adhesion and growth of human multiple myeloma cells in the bone marrow microenvironment. Cancer research 66, 6675-6682.

Tran, K., Merika, M., and Thanos, D. (1997). Distinct functional properties of IkappaB alpha and IkappaB beta. Molecular and cellular biology 17, 5386-5399.

Wajant, H., Pfizenmaier, K., and Scheurich, P. (2003). Tumor necrosis factor signaling.

Cell death and differentiation 10, 45-65.

Weih, F., Carrasco, D., Durham, S. K., Barton, D. S., Rizzo, C. A., Ryseck, R. P., Lira, S. A., and Bravo, R. (1995). Multiorgan inflammation and hematopoietic abnormalities in mice with a targeted disruption of RelB, a member of the NF-kappa B/Rel family. Cell 80, 331-340.

Weil, R., Laurent-Winter, C., and Israel, A. (1997). Regulation of IkappaBbeta degradation. Similarities to and differences from IkappaBalpha. The Journal of biological chemistry 272, 9942-9949.

Wu, H., and Arron, J. R. (2003). TRAF6, a molecular bridge spanning adaptive immunity, innate immunity and osteoimmunology. BioEssays : news and reviews in molecular, cellular and developmental biology 25, 1096-1105.

Xiang, Y., Remily-Wood, E. R., Oliveira, V., Yarde, D., He, L., Cheng, J. Q., Mathews, L., Boucher, K., Cubitt, C., Perez, L., et al. (2011). Monitoring a nuclear factor-kappaB signature of drug resistance in multiple myeloma. Molecular &

cellular proteomics : MCP 10, M110 005520.

Xiao, G., Fong, A., and Sun, S. C. (2004). Induction of p100 processing by NF-kappaB-inducing kinase involves docking IkappaB kinase alpha (IKKalpha) to p100 and IKKalpha-mediated phosphorylation. The Journal of biological chemistry

49

279, 30099-30105.

Yadav, B., Taurin, S., Rosengren, R. J., Schumacher, M., Diederich, M., Somers-Edgar, T. J., and Larsen, L. (2010). Synthesis and cytotoxic potential of heterocyclic cyclohexanone analogues of curcumin. Bioorganic & medicinal chemistry 18, 6701-6707.

Yang, D. T., Young, K. H., Kahl, B. S., Markovina, S., and Miyamoto, S. (2008).

Prevalence of bortezomib-resistant constitutive NF-kappaB activity in mantle cell lymphoma. Molecular cancer 7, 40.

Zhong, H., May, M. J., Jimi, E., and Ghosh, S. (2002). The phosphorylation status of nuclear NF-kappa B determines its association with CBP/p300 or HDAC-1.

Molecular cell 9, 625-636.

50

Figure 1. The classical NF-κB signaling pathway

Starting from receiving signal, the phosphorylation is occurred on IKK complex which is the key modulator of whole pathway. Followed by phosphorylating IκBα, IκBα is degraded by proteasome resulting in translocation of NF-κB complex which turn on multiple genes associating with cancer progression (Hayden and Ghosh, 2004).

51

Figure 2. The alternative NF-κB signaling pathway

The alternative pathway has NIK which does not exist in classical pathway. The acti-vation of NIK results in the phosphorylation of IKKα homodimer which is followed by phosphorylating p100. The phosphorylated p100 will be processed by proteasome and then form the active NF-κB complex which is able to translocate into nucleus (Hayden and Ghosh, 2004).

52

Figure 3. WYT-33-6 dose-dependently inhibits the degradation of IκBα in NIH3T3 cells. (A) NIH3T3 cells were treated with increasing concentrations of

Figure 3. WYT-33-6 dose-dependently inhibits the degradation of IκBα in NIH3T3 cells. (A) NIH3T3 cells were treated with increasing concentrations of

相關文件