• 沒有找到結果。

Suggestion for Future Work

在文檔中 碩 士 論 文 中 華 大 學 (頁 72-79)

CHAPTER 4 Result and Discussion

5.2 Suggestion for Future Work

Although we have fabricated Al gated n-MOSFETs on HfTiO gate dielectric with 1.9 nm EOT. The fully Al/HfTiO device has high effective work function of 4.2 eV, high peak electron mobility of 121 cm2/V-s, several works are worthy to do in the future and are recommended here:

1. We need to find the way how to fabricate the device of CMOSFET.

2. Because the threshold voltage is not small enough, we need to search new electrode of high-κ metal gate to improve the thermal voltage.

3. In future, we will apply this work in my investigation to the present circuit design in order to check the influences of short channel effects in the advanced CMOSFET technology.

4. We should also measure the reliability of the Al/HfTiO CMOSFET.

61

References

[1] E. P. Gusev, D. A. Buchanan, E. Cartier, A. Kumar, D. DiMaria, S. Guha, A.

Callegari, S. Zafar, P. C. Jamison, D. A. Neumayer, M. Copel, M. A. Gribelyuk, H. Okorn-Schmidt, C. D Emic, P. Kozlowski, K. Chan, N. Bojarczuk, L. -A.

Ragnarsson and Rons, “Ultrathin high-κ gate stacks for advanced CMOS devices,” in IEDM Tech. Dig., pp. 20.1.1-20.1.4, 2001.

[2] M. Koyama, K. Suguro, M. Yoshiki, Y. Kamimuta, M. Koike, M. Ohse, C.

Hongo and A. Nishiyama, “Thermally stable ultra-thin nitrogen incorporated ZrO2 gate dielectric prepared by low temperature oxidation of ZrN,” in IEDM Tech. Dig., pp. 20.3.1-20.3.4, 2001.

[3] W. Zhu, T. P. Ma, T. Tamagawa, Y. Di, J. Kim, R. Carruthers, M. Gibson and T.

Furukawa, “HfO2 and HfAlO for CMOS: thermal stability and current transport,”

in IEDM Tech. Dig., pp. 20.4.1-20.4.4, 2001.

[4] L. Kang, K. Onishi, Y. Jeon, Byoung Hun Lee, C. Kang, Wen-Jie Qi, R. Nieh, S.

Gopalan, R. Choi and J. C. Lee, “ MOSFET devices with polysilicon on single-layer HfO2 high-κ dielectrics,” in IEDM Tech. Dig., pp. 35-38, 2000.

[5] R. Choi, Chang Seok Kang, Byoung Hun Lee, K. Onishi, R. Nieh, S. Gopalan, E.

Dharmarajan and J. C. Lee, “High-quality ultra-thin HfO2 gate dielectric MOSFETs with TaN electrode and nitridation surface preparation,” in IEDM Tech. Dig., pp. 15-16, 2001.

[6] Z. J. Luo, T. P. Ma, E. Cartier, M. Copel, T. Tamagawa and B. Halpern,

“Ultra-thin ZrO2 (or silicate) with high thermal stability for CMOS gate applications,” in Symp. on VLSI Technology, pp. 135-136, 2001.

62

[7] International Technology Roadmap for Semiconductor, 2008.

[8] D.-G. Park, T.-H. Cha, K.-Y. Lim, H.-J. Cho, T.-K. Kim, S.-A. Jang, Y.-S. Suh, V.Misra, I.-S. Yeo, J.-S. Roh, J. W. Park, and H.-K. Yoon, “Robust ternary metal gate electrodes for dual gate CMOS devices,” in IEDM Tech. Dig., 2001, pp.

671-674

[9] Y.H. Kim, C. H. Lee, T, S. Jeon, W. P. Bai, C. H. Choi, S. J. Lee, L. Xinjian, R.

Clarks, D. Roberts, and D. L. Kwong, “High quality CVD TaN gate electrode for sub-100 nm MOS devices,” in IEDM Tech. Dig., 2001, pp. 667-670

[10] J. H. Lee, H. Zhong, Y.-S. Suh, G. Heuss, J. Gurganus, B. Chen, and V. Misra,

“Tunable work function dual metal gate technology for bulk and nonbulk CMOS,” in IEDM Tech. Dig., 2002, pp. 359-362.

[11] C. Hobbs, L. Fonseca, V. Dhandapani, S. Samavedam, B. Taylor, J. Grant, L. Dip, D. Triyoso, R. Hegde, D. Gilmer, R. Garica, D. Roan, L. Lovejoy, R. Rai, L.

Hebert, H. Tseng, B. White, and P. Tobin, “Fermilevel pinning at the polySi/metal oxide interface,” in Symp. on VLSI Tech.Dig.,2003,pp. 9-10.

[12] H.-H. Tseng, C. C. Capasso, J. K. Schaeffer, E. A. Hebert, P. J. Tobin, D. C. Gilmer, D. Triyoso, M. E. Ramón, S. Kalpat, E. Luckowski, W. J. Taylor, Y. Jeon, O. Adetutu, R. I. Hegde, R. Noble, M. Jahanbani, C. El Chemali, and B. E. White, “Improved short channel device characteristics with stress relieved pre-oxide (SRPO) and a novel tantalum carbon alloy metal gate/HfO2 stack,” in IEDM Tech. Dig., pp. 821-824, 2004.

[13] H. -J. Cho, C. S. Kang, K. Onishi, S. Gopalan, R. Nieh, R. Choi, E. Dharmarajan and J.C. Lee, “ Novel nitrogen profile engineering for improved TaN/HfO2 Si MOSFET performance,” in IEDM Tech. Dig., pp. 30.2.1-30.2.4, 2001.

63

[14] D. S. Yu, Albert Chin, C. H. Wu, M.-F. Li, C. Zhu, S. J. Wang, W. J. Yoo, B. F.

Hung and S. P. McAlister, “Lanthanide and Ir-based Dual Metal-Gate/HfAlON CMOS with Large Work-Function Difference,” in IEDM Tech. Dig., pp.

634-637, 2005.

[15] Y. T. Hou, M. F. Li, T. Low, and D. L. Kwong, “ Impact of metal gate work function on gate leakage of MOSFETs,” in DRC Symp., pp. 154-155, 2003.

[16] Dae-Gyu Park, Kwan-Yong Lim, Heung-Jae Cho, Tae-Ho Cha, Joong-Jung Kim, Jung-Kyu Ko, Ins-Seok Yeo and Jin Won Park, “ Novel damage-free direct metal gate process using atomic layer deposition,” in Symp. on VLSI Technology, pp.

65-66, 2001.

[17] C. Cabral Jr. , J. Kedzierski, B. Linder, S. Zafar, V. Narayanan, S. Fang, A.

Steegen, P. Kozlowski, R. Carruthers, and R. Jammy,” Dual work function fully silicided metal gates,” in Symp. on VLSI Technology, pp. 184-185, 2004.

[18] S. J. Rhee, H. S. Kim, C. Y. Kang, C. H. Choi, M. Zhang, F. Zhu, T. Lee, I. Ok, M. S. Akbar, S. A. Krishnan, and Jack C. Lee, “Optimization and Reliability Characteristics of TiO2/HfO2 Multi-metal Dielectric MOSFETs,” in Symp. on VLSI Technology, pp. 168-169, 2005.

[19] S. B. Samavedam, L. B. La, J. Smith, S. Dakshina-Murthy, E. Luckowski, J.

Schaeffer, M. Zavala, R. Martin, V. Dhandapani, D. Triyoso, H. H. Tseng, P. J.

Tobin, D. C. Gilmer, C. Hobbs, W. J. Taylor, J. M. Grant, R. I. Hegde, J. Mogab, C. Thomas, P. Abramowitz, M. Moosa, J. Conner, J. Jiang, V. Arunachalarn, M.

Sadd, B.-Y. Nguyen, and B. White,” Dual-metal gate CMOS with HfO2 gate dielectric,” in IEDM Tech. Dig., pp. 433-436, 2002.

64

[20] D. S. Yu, A. Chin, C. C. Laio, C. F. Lee, C. F. Cheng, W. J. Chen, C. Zhu, M.-F.

Li, S. P. McAlister, and D. L. Kwong, “3D GOI CMOSFETs with novel IrO2 (Hf) dual gates and high-κ dielectric on 1P6M-0.18µm-CMOS,” in IEDM Tech. Dig., pp. 181-184, 2004.

[21] D. S. Yu, A. Chin, C. C. Liao, C. F. Lee, C. F. Cheng, M. F. Li, Won Jong Yoo, and S. P. McAlister, “3D Metal-Gate/High-κ/GOI CMOSFETs on 1-Poly-6-Metal 0.18-µm Si Devices,” IEEE Electron Device Letters, Vol. 26, pp.

118-120, Feb. 2005.

[22] C. Hobbs, R. Hegde, B. Maiti, H. Tseng, D. Gilmer, P. Tobin, O. Adetutu, F.

Huang, D. Weddington, R. Nagabushnam, D. O’Meara, K. Reid, L. La, L. Grove and M, Rossow, “Sub-Quarter Micron CMOS Process for TiN-Gate MOSFETs with TiO2 Gate Dielectric formed by Titanium Oxidation,” in Symp. on VLSI Technology, pp. 133-134, 1999.

[23] X. P. Wang, C. Shen, Ming-Fu Li, H.Y. Yu, Yiyang Sun, Y. P. Feng, Andy Lim, Hwang Wan Sik, Albert Chin, Y. C. Yeo, Patrick Lo, and D.L. Kwong,” Dual Metal Gates with Band-Edge Work Functions on Novel HfLaO High-κ Gate Dielectric,” in Symp. on VLSI Technology, pp. 12-13, 2006.

[24] J. H. Lee, H. Zhong, Y.-S. Suh, G. Heuss, J. Gurganus, B. Chen, and V. Misra,”

Tunable work function dual metal gate technology for bulk and nonbulk CMOS,”

in IEDM Tech. Dig., pp. 359-362, 2002.

[25] H. Y. Yu, M. F. Li, and D.L. Kwong, “Thermally Robust HfN Metal as a Promising Gate Electrode for Advanced MOS Device Application,” IEEE Transactions on Electron Devices, vol. 51, Apr., 2004.

65

[26] A. Veloso, K. G. Anil, L. Witters, S. Brus, S. Kubicek, J.-F. de Marneffe, B. Sijmus, K. Devriendt, A. Lauwers, T. Kauerauf, M. Jurczak, and S. Biesemans, “Work function engineering by FUSI and its impact on the performance and reliability of oxynitride and Hf-silicate based MOSFETs,” in IEDM Tech. Dig., pp. 855-858, 2004.

[27] S. J. Rhee, C. S. Kang, C. H. Choi, C. Y. Kang, S. Krishnan, M. Zhang, M. S. Akbar, and J. C. Lee, “Improved electrical and material characteristics of hafnium titanate multi-metal oxide n-MOSFETs with ultra-thin EOT (~8Å) gate dielectric application,” in IEDM Tech. Dig., pp.837-840, 2004.

[28] E. P. Gusev, D. A. Buchanan, E. Cartier, A. Kumar, D. DiMaria, S. Guha, A.

Callegari, S. Zafar, P. C. Jamison, D. A. Neumayer, M. Copel, M. A. Gribelyuk, H. Okorn-Schmidt, C. D Emic, P. Kozlowski, K. Chan, N. Bojarczuk, L. -A.

Ragnarsson and Rons, “Ultrathin high-κ gate stacks for advanced CMOS devices,” in IEDM Tech. Dig., pp. 20.1.1-20.1.4, 2001.

[29] V. Mikhelashvili and G. Eisenstein, “High-κ Al2O3-HfTiO Nanolaminates With Less Than 0.8-nm Equivalent Oxide Thickness,” IEEE Electron Device Letters, VOL. 28, NO. 1, pp. 24-26, Jan. 2007.

[30] C. H. Wu, B. F. Hung, Albert Chin, S. J. Wang, F. Y. Yen, Y. T. Hou, Y. Jin, H.

J.Tao, S. C. Chen, and M. S. Liang, “HfSiON n-MOSFETs Using Low Work Function HfSix Gate,” IEEE Electron Device Letters, Vol. 27, Issue 9, pp.762-764, 2006.

[31] C. H. Wu, B. F. Hung, Albert Chin, S. J. Wang, F. Y. Yen, Y. T. Hou, Y. Jin, H.

J. Tao, S. C. Chen, and M. S. Liang, “HfAlON n-MOSFETs Incorporating Low Work Function Gate Using Ytterbium-Silicide,” IEEE Electron Device Letters, Vol. 27, Issue 6, pp. 454-456, June 2006.

66

[32] A. Chin, C. C. Liao, C. H. Lu, W. J. Chen, and C. Tsai, “Device and reliability of high-κ Al2O3 gate dielectric with good mobility and low Dit,” in Symp. on VLSI Tech. Dig., 1999, pp. 133-134.

[33] K. C. Chiang, Albert Chin, C. H. Lai, W. J. Chen, C. F. Cheng, B. F. Hung, C. C.

Liao, “Very high-κ and high density TiTaO MIM capacitors for analog and RF applications,” in Symp. on VLSI Tech. Dig., 2005, pp. 62-63.

[34] D. S. Yu, A. Chin, C. H. Wu, M.-F. Li, C. Zhu, S. J. Wang, W. J. Yoo, B. F. Hung and S. P. McAlister, “Lanthanide and Ir-based dual metal-gate/HfAlON CMOS with large work-function difference,” in IEDM Tech. Dig., 2005, pp. 649-652.

在文檔中 碩 士 論 文 中 華 大 學 (頁 72-79)

相關文件