• 沒有找到結果。

Chapter 7 Summaries and Suggestions for Future Research

7.2 Suggestions for Future Research

In this thesis, we only discuss with the affine nonlinear systems. The future research is recommended to work toward more general nonlinear systems.

References

[1] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators, ” Neural Networks, no. 2, pp.

359-366, 1989.

[2] L. X. Wang, Adaptive Fuzzy Systems and Control, Prentice Hall, 1994.

[3] C. H. Wang, W. Y. Wang, T. T. Lee, and P. S. Tseng, “Fuzzy B-spline membership function (BMF) and its applications in fuzzy-neural control, ” IEEE Transactions on Systems Man and Cybernetics, Vol. 25, No. 5, pp. 841-851, May 1995.

[4] W. Y. Wang, Y.H. Chien, and I.H. Li, “ An On-Line Robust and Adaptive T-S Fuzzy-Neural Controller for More General Unknown Systems,”

International Journal of Fuzzy Systems, vol. 10, no. 1, pp. 33-43, 2008.

[5] C. T. Lin, and L. Siana, “An Efficient Human Detection System Using Adaptive Neural Fuzzy Networks,” International Journal of Fuzzy Systems, vol. 10, no. 3, pp. 150-160, 2008.

[6] S. Wu, M. J. Er, and Y. Gao, “A fast approach for automatic generation of fuzzy rules by generalized dynamic fuzzy neural networks,” IEEE Transactions on Fuzzy Systems, Vol. 9, pp.578-594, 2001.

[7] Y. G. Leu, W. Y. Wang, and T. T. Lee, “Robust Adaptive Fuzzy-Neural Controllers for Uncertain Nonlinear Systems,” IEEE Transactions On Robotics and Automation, Vol. 15, No. 5, pp. 805-817, October 1999.

[8] Y. G. Leu, T. T. Lee, and W. Y. Wang, “On-line tuning of fuzzy neural network for adaptive control of nonlinear dynamic systems,” IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 27, pp.

1034–1043, Dec. 1997.

[9] T. Y. Kim and J. H. Han, “Edge representation with fuzzy sets in blurred images,” Fuzzy Sets Syst., vol. 100, pp. 77–87, 1998.

[10] Z. Yang, T. Hachino, and T. Tsuji, “Model reduction with time delay combining the least-squares method with the genetic algorithm, ” IEE Proc. Control Theorem Appl., vol. 143, no. 3, 1996.

[11] W.Y. Wang, Y.G. Leu, and T.T. Lee, "Output-feedback control of nonlinear systems using direct adaptive fuzzy-neural controller,” Fuzzy Sets and Systems 140, pp. 341-358, 2003.

[12] W. Y. Wang, M. L. Chan, T. T. Lee, and C. H. Liu, “Recursive Back-stepping Design of Adaptive Fuzzy Controller for Strict Output Feedback Nonlinear Systems,” Asian Journal of Control, Vol. 4, No.3, Sept. 2002.

[13] W. Y. Wang, M. L. Chan, C. C. Hsu, and T. T. Lee, “H Tracking-Based Sliding Mode Control for Uncertain Nonlinear Systems via an Adaptive Fuzzy-Neural Approach,” IEEE Trans. on System Man and Cybernetics-Part B, Vol. 32, No.4, pp.483-492. 2002.

[14] L. X. Wang, “A Supervisory Controller for Fuzzy Control Systems that Guarantees Stability,” IEEE Trans. On Automatic Control, Vol. 39, No. 9, pp.1845-1847, 1994.

[15] Y.G. Leu, T.T. Lee, and W.Y. Wang, "Observer-based Adaptive Fuzzy-Neural Control for Unknown Nonlinear Dynamical Systems,"

IEEE Trans. Syst. Man, Cyber. Part B: Cybernetics, vol. 29, no. 5, pp.583-591, Oct., 1999.

[16] C.H. Wang, H.L. Liu, T.C. Lin, “Direct adaptive fuzzy-neural control with state observer and supervisory controller for unknown nonlinear dynamical systems,” IEEE Transactions on Fuzzy Systems, vol. 10, no.1, pp.39-49, 2002.

[17] K. Hornik, M. Stinchcombe, and H. White, "Multilayer feedforward networks are universal approximators," Neural Networks, no. 2, pp.

359-366, 1989.

[18] Li-Xin Wang, Adaptive Fuzzy Systems and Control, Prentice Hall, 1994.

[19] 感應機向量控制驅動器之PID控制器調適 王進力 淡江大學 電機工 程學系

[20] S Kirkpatrick, CD Gelatt Jr, MP Vecchi, “Optimization by Simulated Annealing,” Science Vol. 220. no. 4598, pp. 671 – 680, 1983

[21] J. Sheild, ‘”Partitioning concurrent VLSI simulation programs onto a multiprocessor by simulated annealing,”IEE PROCEEDINGS, vol.134, Pt.E,NO.1,JANURAY 1987.

[22] K. Kurbel, B. Schneider, and K. Singh, “Solving Optimization Problems by Parallel Recombinative Simulated Annealing on a Parallel Computer-An Application to Standard Cell Placement in VLSI Design, ” IEEE Transactions on Systems, MAN, AND CYBERNETICS-PART B:

CYBERNETICS, vol. 28, on,3, pp. 454-461, JUNE 1998.

[23] M. Gao, and J. Tian, “Path Planning for Mobile Robot Based on Improved Simulatded Annealing Artificial Neural Network,” Third International Conference on Natural Computation, 2007.

[24] P. Lucidarme, and A. Liegeois, “Learning Reactive Neuroconrtollers using Simulated Annealing for Mobile Robots,” Intf. Conference on Intelligent Robots and Systems, Oct. 2003.

[25] Y. Wang, W. Yan, and G. Zhang, “Adaptive Simulated Annealing for the optimal of Electromagnetic Devices,” IEEE Transactions on MAGNETICS, vol. 32, no.3, pp.1214–1217, May 1996.

[26] A. F. Atiya, A. G. Parlos, and L. Ingber, ”A Reinforcement Learning Method Based on Adaptive Simulated Annealing,” IEEE Circuits and Systems , vol. 1, pp.121–124, Dec. 2003.

[27] L. Ingber “Very fast simulated re-annealing,” Mathematical Computer Modelling, vol.12, no.8, pp. 967-973, 1989.

[28] S. J. Ho, L. S. Shu, and S. Y. Ho, “Optimizing Fuzzy Neural Networks for Tuning PID Controllers Using an Orthogonal Simulated Annealing Algorithm OSA,” IEEE Tranactions on Fuzzy Systems,vol.14,no.3,JUNE 2006.

[29] W.K. Ho, C.C.Hang,and J. Zhou,“Self-tuning PID control of a plant with under-dampd response with specifications on gain and phase margins, ”IEEE Trans. Control Syst. Technol .,vol.5, no.4, pp.446-452, Jul.1997.

[30] S. J.Ho, S. Y. Ho, and L.S. Shu, “OSA:orthogonal simulated annealing algorithm and its application to designing mixed H2/ H optimal controllers,” IEEE Trans.Syst.,Man,Cybern.A,Syst. Humans, vol. 34, no.

5, pp.588-600,Sep.2004.

[31] S. Y. Ho, S.J.Ho,Y.k.Lin and C.C.W.Chu, “An orthogonal simulated annealing algorithm for large floorplanning problems,” IEEE Trans. Very Large Scale(VLSI)Syst., vol. 12, no. 8, pp.874-876,Aug. 2004.

[32] W. Y. Wnag, and Y. H. Li, “Evolutionary learning of BMF fuzzy-neural networks using a reduced-form genetic algorithm,” IEEE Trans. on Systems, Man and Cybernetics ,part B vol. 33, pp.966-976, 2003.

[33] R.A. Krohling, and J.P. Ray, “Design of optimal disturbance rejection PID controllers using genetic algorithms,” IEEE Trans. Evol.Comput., vol. 5, no. 1, pp.78-82,Feb. 2001.

[34] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth,A. H. Teller,and E.

Teller,“Equation of state calculations by fast computing machines,”

J.Chem.Phys., vol. 21, no. 6, pp.1087-1092,1953.

[35] T. Renyuan, S.Jianzhong, and L.Yan,”Optimization of electromagnetic devices by using intelligent simulated annealing algorithm,” IEEE Trans.

Magn.,vol.34,no.5,pp.2992-2995,Sep.1998.

[36] H. Szu and R. Hartley, “Fast simulated annealing,”Phys.Lett.,vol.122,pp.

157-162,1987.

[37] S.Yang, J.M.Machado,G.Ni,S.L.Ho,and P.Zhou,”A self-learning simulated annealing algorithm for global optimizations of electromagnetic devices,”IEEE Trans. Magn.,vol.36,no.7,pp.1004-1008,Jul.2000.

[38] M. Zhaung and D. P. Atherton, “Automatic tuning of optimal PID controllers,” Proc. Inst. Elect. Eng.,D, vol. 140, pp. 216-224, 1993.

[39] Y. S. Ahmed, S. Tomonobu, M. Tsukasa, U. Naomitsu, and F.

Toshihisa, ”Fuzzy Unit Commitment Scheduling Using Absolutely Stochastic Simulated Annealing,” IEEE Transactions on power systems, vol. 21, no. 2, May 2006.

[40] T. Satoh, and K. Nara, “Maintenance scheduling by using simulated annealing method [for power plants ,” IEEE Trans. Power Syst., vol. 6, no.2, pp. 850-857, May 1991.

[41] S. Y. W. Wang, “An enhanced simulated annealing approach to unit commitment,” Elect. Power Energy Syst., vol. 20, pp. 359-368, May 1998.

[42] F. Zhuang and F. D. Galiana, ”Unit commitment by simulated annealing,”

IEEE Trans. Power Syst., vol. 5, no.1, pp. 311-318, Feb. 1990.

[43] A. H. Mantawy, Y. L. Abel-Mogid, and S.Z. Selim, “A simulated annealing algorithm for unit commitment,” IEEE Trans. Power Syst., vol.

13, no.1, pp. 197-204, Feb. 1998.

[44] C. P. Cheng, C. W. Liu and C.C. Liu,” Unit commitment by simulated annealing algorithms,” Elect. Power Energy Syst., Vol. 24, PP. 149 –158, 2000.

[45] M. M. El-Saadawi, M. A. Tantawi, and E. Tawfik, “A fuzzy optimization based approach to large scale thermal unit commitment,” Elect. Power Syst. Res.,Vol. 72, pp.245–252, 2004.

[46] D. W. Jeffrey,” A simulated annealing algorithm for optimizing RF power efficiency in coupled-cavity traveling-wave tubes,” IEEE Transactions onelectron devices, Vol. 44, No. 12, Dec. 1997.

[47] S. Kirkpatrick, C. D. Gelatt Jr.,and M. P. Vecchi,”Optimization by simulated annealing,”Science, Vol.220, pp. 671-680, May 1983.

[48] E. Aarts and J. Korst, Simulated Annealing and Boltzmann Machines.New York: Wiley, 1989, pp. 88-91.

[49] A. Isidori, Nonlinear Control System. New York: Springer-Verlag, 1989.

[50] M. Krstic, I. Kanellakopoulos, and P.V.Kokotovic, Nonlinear and Adaptive Control Design. New York: Wiley, 1995.

[51] I. Kanellakopoulos, P. V. Kokotovic, and A. S. Morse, “Systematic design of adaptive controller for feedback linearizable system,” IEEE Transactions Automat. Contr., vol. 36, pp. 1241–1253, 1991.

[52] C. Kwan and F. L. Lewis, “Robust backstepping control of nonlinear systems using neural networks,” IEEE Transactions Syst., Man, Cybern.

A, vol. 30, pp. 753–765, 2000.

[53] T. Knohl and H. Unbehauen, “ANNNAC—extension of adaptive backstepping algorithm with artificial neural networks,” Inst. Elect. Eng.

Proc. Contr. Theory Appl., vol. 147, pp. 177–183, 2000.

[54] C. M. Kwan and F. L. Lewis, “Robust backstepping control of induction motors using neural networks,” IEEE Transactions Neural Networks, vol.

11, pp. 1178–1187, 2000.

[55] J. Y. Choi and J. A. Farrell, “Adaptive observer backstepping control using neural networks,” IEEE Transactions Neural Networks, vol. 12, pp.

1103–1112, 2001.

[56] Y. Zhang, P.Y. Peng, and Z.P. Jiang, “Stable Neural Controller Design for Unknown Nonlinear Systems Using Backstepping,” IEEE Transactions on Neural Networks, vol. 11, no. 6, November 2000.

[57] C.F. Hsu, C.M. Lin, and T.T. Lee, “Wavelet Adaptive Backstepping Control for a Class of Nonlinear Systems,” IEEE Transactions on Neural Networks, vol. 17, no. 5, September 2006.

[58] S. S. Sastry and A. Isidori, “Adaptive control of linearization systems,”

IEEE Transactions Automat. Contr., vol. 34, pp. 1123–1131, 1989.

[59] R. Marino and P. Tomei, “Globally adaptive output-feedback control of nonlinear systems, part I: Linear parameterization,” IEEE Transactions Automat. Contr., vol. 38, pp. 17–32, Jan. 1993.

[60] R. Marino and P. Tomei, “Globally adaptive output-feedback control of nonlinear systems, part II: Nonlinear parameterization,” IEEE Transactions Automat. Contr., vol. 38, pp. 33–48, Jan. 1993.

[61] I. Kanellakopoulos, P. V. Kokotovic, and A. S. Morse, “Systematic design of adaptive controllers for feedback linearizable systems,” IEEE Transactions Automat. Contr., vol. 36, pp. 1241–1253, Nov. 1991.

[62] W. Y. Wang, M. L. Chan, T. T. Lee, and C. H. Liu, “Recursive

Back-stepping Design of Adaptive Fuzzy Controller for Strict Output Feedback Nonlinear Systems,” Asian Journal of Control, Vol. 4, No.3, Sept. 2002.

[63] L. X. Wang, “A Supervisory Controller for Fuzzy Control Systems that Guarantees Stability,” IEEE Trans. On Automatic Control, Vol. 39, No. 9, pp.1845-1847, 1994.

[64] Y.G. Leu, T.T. Lee, and W.Y. Wang, "Observer-based Adaptive Fuzzy-Neural Control for Unknown Nonlinear Dynamical Systems,"

IEEE Transactions on Systems, Man, and Cybernetics. Part B:

Cybernetics, vol. 29, no. 5, pp.583-591, Oct., 1999.

[65] C.H. Wang, H.L. Liu, T.C. Lin, “Direct adaptive fuzzy-neural control with state observer and supervisory controller for unknown nonlinear dynamical systems,” IEEE Transactions on Fuzzy Systems, vol. 10, no.1, pp.39-49, 2002.

[66] W. Y. Wang, C. Y. Cheng, and Y. G. Leu, “An online GA-based output-feedback direct adaptive fuzzy-neural controller for nonlinear systems,” IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 34, pp.334-345, February. 2004.

[67] 結合基因演算法和模擬退火法在機組排程決策之應用 張振松 南開技 術學院資管系

[68] J. E. Slotine and W. Li, Applied Nonlinear Control. Englewood Cliffs, NJ:

Prentice-Hall, Inc., 1991.

[69] S. Sastry and M. Bodson, Adaptive Control: Stability, Convergence, and Robustness, Englewood Cliffs, NJ: Prentice-Hall, 1989.

[70] Y. Tang, M. Tomizuka, G. Guerrero, and G. Montemayor, “Decentralized robust control of mechanical systems,” IEEE Trans. Automat.Contr.,vol.

45, pp. 771-776, Apr.2000.

相關文件