• 沒有找到結果。

Suggestions for Future Work

在文檔中 中 華 大 學 (頁 174-191)

Chapter 8 Conclusions and Future Work

8.2 Suggestions for Future Work

In future research, fabricating the metallic ring-shaped nanostructure patterns of thin film on flexible substrates will be attempted. An important feature of ring-shaped nanostructures patterned on metal thin films is its low-temperature fabrication process. The traditional sputtering process of high temperature occasionally leads to distortion of the flexible substrates. Hence, the chemical process technique [142, 143] was used to fabricate metallic ring-shaped nanostructures patterned on thin films to form a flexible substrate from a traditional glass substrate.

In addition, this study presents CrN nanomolds of various periods and nanohole array depths using modified NSL. The optical properties of the antireflective PC-tapered nanopillar layer were transferred from the CrN nanomold morphologies using NIL. The resulting antireflective surfaces are promising for the fabrication of antireflective surface structures with different bands and antireflective optical materials for use in numerous vital fields.

References

[1] T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature, vol. 391, pp. 667-669, 1998.

[2] C. Gene and T. W. Ebbesen, "Light in tiny holes " Nature vol. 445, pp. 39-46, 2007.

[3] H. Ghaemi, T. Thio, D. Grupp, T. W. Ebbesen, and H. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Physical Review B, vol.

58, pp. 6779-6782, 1998.

[4] T. Thio, H. Ghaemi, H. Lezec, P. Wolff, and T. Ebbesen, "Surface-plasmon-enhanced transmission through hole arrays in Cr films," Journal of the Optical Society of America B, vol. 16, pp. 1743-1748, 1999.

[5] E. Popov, M. Neviere, S. Enoch, and R. Reinisch, "Theory of light transmission through subwavelength periodic hole arrays," Physical Review B, vol. 62, pp.

16100-16108, 2000.

[6] A. Lesuffleur, H. Im, N. C. Lindquist, and S. H. Oh, "Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors," Applied Physics Letters, vol. 90, p. 243110, 2007.

[7] K. Shuford, M. Ratner, S. Gray, and G. Schatz, "Finite-difference time-domain studies of light transmission through nanohole structures," Applied Physics B: Lasers and Optics, vol. 84, pp. 11-18, 2006.

[8] F. Hao, P. Nordlander, M. T. Burnett, and S. A. Maier, "Enhanced tunability and linewidth sharpening of plasmon resonances in hybridized metallic ring/disk nanocavities," Physical Review B, vol. 76, pp. 245417-245423, 2007.

[9] E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, "Sensing characteristics of

ultrasensitive biosensors," Nano Letters, vol. 7, pp. 1256-1263, 2007.

[10] C. Bernhard, "Structural and functional adaptation in a visual system," Endeavour, vol.

26, pp. 79-84, 1967.

[11] J. Taniguchi, Y. Kamiya, and N. Unno, "Fabrication of anti-reflection structure using photo-curable polymer," Journal of Photopolymer Science and Technology, vol. 24, pp.

105-110, 2011.

[12] W. Halperin, "Quantum size effects in metal particles," Reviews of Modern Physics, vol. 58, pp. 533-606, 1986.

[13] W. A. de Heer, "The physics of simple metal clusters: Experimental aspects and simple models," Reviews of Modern Physics, vol. 65, pp. 611-676, 1993.

[14] K. W. Tan, S. A. Saba, H. Arora, M. O. Thompson, and U. Wiesner, "Colloidal self-assembly-directed laser-induced non-close-packed crystalline silicon nanostructures," Acs Nano, vol. 5, pp. 7960-7966, 2011.

[15] A. P. Alivisatos, "Perspectives on the physical chemistry of semiconductor nanocrystals," The Journal of Physical Chemistry, vol. 100, pp. 13226-13239, 1996.

[16] J. J. Dong, X. W. Zhang, Z. Yin, S. G. Zhang, J. X. Wang, H. Tan, Y. Gao, F. T. Si, and H. L. Gao, "Controllable growth of highly ordered ZnO nanorod arrays via Inverted self-assembled monolayer template," ACS Applied Materials & Interfaces, vol. 3, pp.

4388-4395, 2011.

[17] N. A. Abu Hatab, J. M. Oran, and M. J. Sepaniak, "Surface-enhanced Raman spectroscopy substrates created via electron beam lithography and nanotransfer printing," Acs Nano, vol. 2, pp. 377-385, 2008.

[18] E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T.

Rindzevicius, B. Kasemo, and M. Käll, "Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography," Nano Letters, vol. 5, pp. 1065-1070, 2005.

[19] J. Rundqvist, J. H. Hoh, and D. B. Haviland, "Directed immobilization of protein-coated nanospheres to nanometer-scale patterns fabricated by electron beam lithography of poly (ethylene glycol) self-assembled monolayers," Langmuir, vol. 22, pp. 5100-5107, 2006.

[20] M. Faustini, B. Marmiroli, L. Malfatti, B. Louis, N. Krins, P. Falcaro, G. Grenci, C.

Laberty-Robert, H. Amenitsch, and P. Innocenzi, "Direct nano-in-micropatterning of TiO2 thin layers and TiO2/Pt nanoelectrode arrays by deep X-ray lithography," Journal of Materials Chemistry, vol. 21, pp. 3597-3603, 2011.

[21] W. Chao, B. D. Harteneck, J. A. Liddle, E. H. Anderson, and D. T. Attwood, "Soft X-ray microscopy at a spatial resolution better than 15 nm," Nature, vol. 435, pp.

1210-1213, 2005.

[22] L. Heyderman, H. Solak, C. David, D. Atkinson, R. Cowburn, and F. Nolting, "Arrays of nanoscale magnetic dots: Fabrication by x-ray interference lithography and characterization," Applied Physics Letters, vol. 85, pp. 4989-4991, 2004.

[23] D. Wang, A. Pierre, M. G. Kibria, K. Cui, X. Han, K. H. Bevan, H. Guo, S. Paradis, A.

R. Hakima, and Z. Mi, "Wafer-level photocatalytic water splitting on GaN nanowire arrays grown by molecular beam epitaxy," Nano Letters, vol. 11, pp. 2353-2357, 2011.

[24] S. Y. Jeong, J. Y. Kim, H. D. Yang, B. N. Yoon, S. H. Choi, H. K. Kang, C. W. Yang, and Y. H. Lee, "Synthesis of silicon nanotubes on porous alumina using molecular beam epitaxy," Advanced Materials, vol. 15, pp. 1172-1176, 2003.

[25] P. Werner, N. D. Zakharov, G. Gerth, L. Schubert, and U. Gösele, "On the formation of Si nanowires by molecular beam epitaxy," International Journal of Materials Research, vol. 97, pp. 1008-1015, 2006.

[26] Y. Choi, S. Hong, and L. P. Lee, "Shadow overlap ion-beam lithography for nanoarchitectures," Nano Letters, vol. 9, pp. 3726-3731, 2009.

nanofabrication: a review," International Journal of Nanoscience, vol. 4, pp. 269-286, 2005.

[28] J. Melngailis, A. Mondelli, I. L. Berry III, and R. Mohondro, "A review of ion projection lithography," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 16, pp. 927-957, 1998.

[29] T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, "Nanosphere lithography: Tunable localized surface plasmon resonance spectra of silver nanoparticles," The Journal of Physical Chemistry B, vol. 104, pp. 10549-10556, 2000.

[30] W. A. Murray and W. L. Barnes, "Plasmonic materials," Advanced Materials, vol. 19, pp. 3771-3782, 2007.

[31] K. Ryu, A. Badmaev, L. Gomez, F. Ishikawa, B. Lei, and C. Zhou, "Synthesis of aligned single-walled nanotubes using catalysts defined by nanosphere lithography,"

Journal of the American Chemical Society, vol. 129, pp. 10104-10105, 2007.

[32] E. M. Hicks, O. Lyandres, W. P. Hall, S. Zou, M. R. Glucksberg, and R. P. Van Duyne,

"Plasmonic properties of anchored nanoparticles fabricated by reactive ion etching and nanosphere lithography," The Journal of Physical Chemistry C, vol. 111, pp.

4116-4124, 2007.

[33] C. L. Haynes and R. P. Van Duyne, "Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics," The Journal of Physical Chemistry B, vol. 105, pp. 5599-5611, 2001.

[34] H. Deckman and J. Dunsmuir, "Natural lithography," Applied Physics Letters, vol. 41, pp. 377-379, 1982.

[35] H. Deckman and J. Dunsmuir, "Applications of surface textures produced with natural lithography," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 1, pp. 1109-1112, 1983.

[36] J. C. Hulteen and R. P. Van Duyne, "Nanosphere lithography: A materials general

fabrication process for periodic particle array surfaces," Journal of Vacuum Science &

Technology A: Vacuum, Surfaces, and Films, vol. 13, pp. 1553-1558, 1995.

[37] J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, "Nanosphere lithography: Size-tunable silver nanoparticle and surface cluster arrays," The Journal of Physical Chemistry B, vol. 103, pp. 3854-3863, 1999.

[38] H. J. Fan, B. Fuhrmann, R. Scholz, F. Syrowatka, A. Dadgar, A. Krost, and M.

Zacharias, "Well-ordered ZnO nanowire arrays on GaN substrate fabricated via nanosphere lithography," Journal of Crystal Growth, vol. 287, pp. 34-38, 2006.

[39] J. K. N. Lindner, D. Bahloul-Hourlier, D. Kraus, M. Weinl, T. Mélin, and B. Stritzker,

"TEM characterization of Si nanowires grown by CVD on Si pre-structured by nanosphere lithography," Materials Science in Semiconductor Processing, vol. 11, pp.

169-174, 2008.

[40] T. Xu, J. Miao, M. Ashraf, N. Lin, and F. Chollet, "Synthesis of regular nano-pitched carbon nanotube array by using nanosphere lithography for interconnect applications,"

Materials Letters, vol. 63, pp. 867-869, 2009.

[41] T. Yamasaki, K. Sumioka, and T. Tsutsui, "Organic light-emitting device with an ordered monolayer of silica microspheres as a scattering medium," Applied Physics Letters, vol. 76, pp. 1243-1245, 2000.

[42] G. M. Whitesides and B. Grzybowski, "Self-assembly at all scales," Science, vol. 295, pp. 2418-2421, 2002.

[43] F. Járai-Szabó, S. Aştilean, and Z. Néda, "Understanding self-assembled nanosphere patterns," Chemical Physics Letters, vol. 408, pp. 241-246, 2005.

[44] S. Cheng, S. Lu, C. Li, Y. Chang, C. Huang, and H. Chen, "Fabrication of periodic nickel silicide nanodot arrays using nanosphere lithography," Thin Solid Films, vol.

494, pp. 307-310, 2006.

hexagonal non-close-packed colloidal crystals as templates," Langmuir, vol. 22, pp.

3955-3958, 2006.

[46] I. A. M. Ibrahim, A. Zikry, and M. A. Sharaf, "Preparation of spherical silica nanoparticles: Stober silica," Journal of American Science, vol. 6, pp. 985-989, 2010.

[47] J. Ho Youk, "Preparation of gold nanoparticles on poly (methyl methacrylate) nanospheres with surface-grafted poly (allylamine)," Polymer, vol. 44, pp. 5053-5056, 2003.

[48] N. Denkov, O. Velev, P. Kralchevski, I. Ivanov, H. Yoshimura, and K. Nagayama,

"Mechanism of formation of two-dimensional crystals from latex particles on substrates," Langmuir, vol. 8, pp. 3183-3190, 1992.

[49] N. Denkov, O. Velev, P. Kralchevsky, I. Ivanov, H. Yoshimura, and K. Nagayama,

"Two-dimensional crystallization," Nature vol. 361, p. 26, 1993.

[50] P. A. Kralchevsky and K. Nagayama, "Capillary forces between colloidal particles,"

Langmuir, vol. 10, pp. 23-36, 1994.

[51] A. S. Dimitrov and K. Nagayama, "Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces," Langmuir, vol. 12, pp. 1303-1311, 1996.

[52] E. Adachi, A. S. Dimitrov, and K. Nagayama, "Stripe patterns formed on a glass surface during droplet evaporation," Langmuir, vol. 11, pp. 1057-1060, 1995.

[53] P. A. Kralchevsky and N. D. Denkov, "Capillary forces and structuring in layers of colloid particles," Current Opinion in Colloid & Interface Science, vol. 6, pp. 383-401, 2001.

[54] A. S. Dimitrov and K. Nagayama, "Steady-state unidirectional convective assembling of fine particles into two-dimensional arrays," Chemical Physics Letters, vol. 243, pp.

462-468, 1995.

[55] S. M. Weekes, F. Y. Ogrin, W. A. Murray, and P. S. Keatley, "Macroscopic arrays of

magnetic nanostructures from self-assembled nanosphere templates," Langmuir, vol.

23, pp. 1057-1060, 2007.

[56] Y. Zhang, W. Li, and K. Chen, "Application of two-dimensional polystyrene arrays in the fabrication of ordered silicon pillars," Journal of Alloys and Compounds, vol. 450, pp. 512-516, 2008.

[57] V. Canpean, S. Astilean, T. Petrisor, M. Gabor, and I. Ciascai, "Convective assembly of two-dimensional nanosphere lithographic masks," Materials Letters, vol. 63, pp.

1834-1836, 2009.

[58] S. Matsushita, T. Miwa, and A. Fujishima, "Distribution of components in composite two-dimensional arrays of latex particles and evaluation in terms of the fractal dimension," Langmuir, vol. 13, pp. 2582-2584, 1997.

[59] A. Winkleman, B. D. Gates, L. S. McCarty, and G. M. Whitesides, "Directed self‐ assembly of spherical particles on patterned electrodes by an applied electric field," Advanced Materials, vol. 17, pp. 1507-1511, 2005.

[60] J. Aizenberg, P. V. Braun, and P. Wiltzius, "Patterned colloidal deposition controlled by electrostatic and capillary forces," Physical Review Letters, vol. 84, pp. 2997-3000, 2000.

[61] M. J. K. Klein, M. Guillaumée, B. Wenger, L. Andrea Dunbar, J. Brugger, H.

Heinzelmann, and R. Pugin, "Inexpensive and fast wafer-scale fabrication of nanohole arrays in thin gold films for plasmonics," Nanotechnology, vol. 21, p. 205301, 2010.

[62] V. Ng, Y. Lee, B. Chen, and A. Adeyeye, "Nanostructure array fabrication with temperature-controlled self-assembly techniques," Nanotechnology, vol. 13, pp.

554-558, 2002.

[63] A. D. Rakic, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, "Optical properties of metallic films for vertical-cavity optoelectronic devices," Applied Optics, vol. 37, pp.

[64] C. F. Boliren and D. R. Huffman, "Absorption and scattering of light by small particles," John Wiley & Sons, vol. 16, pp. 1658-1706, 1983.

[65] Y. Xia and N. J. Halas, "Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures," Mrs Bulletin, vol. 30, pp. 338-348, 2005.

[66] H. Raether, "Surface plasmons on smooth and rough surfaces and on gratings,"

Springer Tracts in Modern Physics, vol. 111, pp. 40-56, 1998.

[67] W. C. Tan, T. Preist, J. Sambles, and N. Wanstall, "Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal gratings," Physical Review B, vol. 59, pp. 12661-12666, 1999.

[68] W. C. Tan, T. Preist, and R. Sambles, "Resonant tunneling of light through thin metal films via strongly localized surface plasmons," Physical Review B, vol. 62, pp.

11134-11138, 2000.

[69] L. Martin-Moreno, F. Garcia-Vidal, H. Lezec, K. Pellerin, T. Thio, J. Pendry, and T.

Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Physical Review Letters, vol. 86, pp. 1114-1117, 2001.

[70] W. C. Liu and D. P. Tsai, "Optical tunneling effect of surface plasmon polaritons and localized surface plasmon resonance," Physical Review B, vol. 65, p. 155423, 2002.

[71] U. Schröter and D. Heitmann, "Surface-plasmon-enhanced transmission through metallic gratings," Physical Review B, vol. 58, pp. 15419-15421, 1998.

[72] P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, "Surface plasmon mediated emission from organic light-emitting diodes," Advanced Materials, vol. 14, pp. 1393-1396, 2002.

[73] T. S. Kim, S. M. Kim, Y. H. Jang, and G. Y. Jung, "Increase of light extraction from GaN based light emitting diodes incorporating patterned structure by colloidal lithography," Applied Physics Letters, vol. 91, p. 171114, 2007.

[74] C. J. Ting, M. C. Huang, H. Y. Tsai, C. P. Chou, and C. C. Fu, "Low cost fabrication of

the large-area anti-reflection films from polymer by nanoimprint/hot-embossing technology," Nanotechnology, vol. 19, p. 205301, 2008.

[75] C. H. Sun, P. Jiang, and B. Jiang, "Broadband moth-eye antireflection coatings on silicon," Applied Physics Letters, vol. 92, p. 061112, 2008.

[76] S. H. Hong, B. J. Bae, K. S. Han, E. J. Hong, H. Lee, and K. W. Choi, "Imprinted moth-eye antireflection patterns on glass substrate," Electronic Materials Letters, vol. 5, pp. 39-42, 2009.

[77] B. D. MacLeod and D. S. Hobbs, "Low-cost anti-reflection technology for automobile displays," Symposium Digest of Technical Vehicle Display Conference, vol. 2.6, pp.

1-6, 2004.

[78] P. Clapham and M. Hutley, "Reduction of lens reflexion by the “Moth Eye” principle,"

Nature, vol. 244, pp. 281-282, 1973.

[79] C. J. Ting, C. F. Chen, and C. Chou, "Subwavelength structures for broadband antireflection application," Optics Communications, vol. 282, pp. 434-438, 2009.

[80] C. J. Ting, C. F. Chen, and C. Chou, "Antireflection subwavelength structures analyzed by using the finite difference time domain method," Optik-International Journal for Light and Electron Optics, vol. 120, pp. 814-817, 2009.

[81] T. L. Chang, K. Y. Cheng, T. H. Chou, C. C. Su, H. P. Yang, and S. W. Luo,

"Hybrid-polymer nanostructures forming an anti-reflection film using two-beam interference and ultraviolet nanoimprint lithography," Microelectronic Engineering, vol.

86, pp. 874-877, 2009.

[82] E. J. Hong, K. J. Byeon, H. Park, J. Hwang, H. Lee, K. Choi, and G. Y. Jung,

"Fabrication of moth-eye structure on p-GaN layer of GaN-based LEDs for improvement of light extraction," Materials Science and Engineering: B, vol. 163, pp.

170-173, 2009.

microstructures by intermediate film mold inserted hot embossing process,"

Microsystem Technologies, vol. 14, pp. 1149-1155, 2008.

[84] J. T. Wu, W. Y. Chang, and S. Y. Yang, "Fabrication of a nano/micro hybrid lens using gas-assisted hot embossing with an anodic aluminum oxide (AAO) template," Journal of Micromechanics and Microengineering, vol. 20, p. 075023, 2010.

[85] H. Xu, N. Lu, D. Qi, L. Gao, J. Hao, Y. Wang, and L. Chi, "Broadband antireflective Si nanopillar arrays produced by nanosphere lithography," Microelectronic Engineering, vol. 86, pp. 850-852, 2009.

[86] Y. H. Kang, S. S. Oh, Y. S. Kim, and C. G. Choi, "Fabrication of antireflection nanostructures by hybrid nano-patterning lithography," Microelectronic Engineering, vol. 87, pp. 125-128, 2010.

[87] D. Y. Wang, J. H. Lin, and W. Y. Ho, "Study on chromium oxide synthesized by unbalanced magnetron sputtering," Thin Solid Films, vol. 332, pp. 295-299, 1998.

[88] S. Pillai, A. G. Hemmersam, R. Mukhopadhyay, R. L. Meyer, S. Moghimi, F.

Besenbacher, and P. Kingshott, "Tunable 3D and 2D polystyrene nanoparticle assemblies using surface wettability, low volume fraction and surfactant effects,"

Nanotechnology, vol. 20, p. 025604, 2009.

[89] P. Kelly, R. Arnell, W. Ahmed, and A. Afzal, "Novel engineering coatings produced by closed-field unbalanced magnetron sputtering," Materials & Design, vol. 17, pp.

215-219, 1996.

[90] S. Han, J. Lin, G. Wang, and H. Shih, "The effect of preferred orientation on the mechanical properties of chromium nitride coatings deposited on SKD11 by unbalanced magnetron sputtering," Materials Letters, vol. 57, pp. 1202-1209, 2003.

[91] M. Faustini, M. Vayer, B. Marmiroli, M. Hillmyer, H. Amenitsch, C. Sinturel, and D.

Grosso, "Bottom-up approach toward titanosilicate mesoporous pillared planar nanochannels for nanofluidic applications," Chemistry of Materials, vol. 22, pp.

5687–5694, 2010.

[92] R. Marty, A. Arbouet, C. Girard, A. Mlayah, V. Paillard, V. K. Lin, S. L. Teo, and S.

Tripathy, "Damping of the acoustic vibrations of individual gold nanoparticles," Nano Letters, vol. 11, pp. 3301–3306, 2011.

[93] Y. K. Hong, H. Kim, G. Lee, W. Kim, J. I. Park, J. Cheon, and J. Y. Koo, "Controlled two-dimensional distribution of nanoparticles by spin-coating method," Applied Physics Letters, vol. 80, pp. 844-846, 2002.

[94] C. L. Cheung, R. Nikolić, C. Reinhardt, and T. Wang, "Fabrication of nanopillars by nanosphere lithography," Nanotechnology, vol. 17, pp. 1339–1343, 2006.

[95] V. Zaporojtchenko, J. Zekonyte, S. Wille, U. Schuermann, and F. Faupel, "Tailoring of the PS surface with low energy ions: Relevance to growth and adhesion of noble metals," Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 236, pp. 95-102, 2005.

[96] C. Haginoya, M. Ishibashi, and K. Koike, "Nanostructure array fabrication with a size-controllable natural lithography," Applied Physics Letters, vol. 71, p. 2934, 1997.

[97] R. J. Warburton, C. Schäflein, D. Haft, F. Bickel, A. Lorke, K. Karrai, J. M. García, W.

Schoenfeld, and P. M. Petroff, "Optical emission from a charge-tunable quantum ring,"

Nature vol. 405, pp. 926-929, 2000.

[98] F. Q. Zhu, D. Fan, X. Zhu, J. G. Zhu, R. C. Cammarata, and C. L. Chien,

"Ultrahigh‐ density arrays of ferromagnetic nanorings on macroscopic areas,"

Advanced Materials, vol. 16, pp. 2155-2159, 2004.

[99] J. Rothman, M. Kläui, L. Lopez-Diaz, C. Vaz, A. Bleloch, J. Bland, Z. Cui, and R.

Speaks, "Observation of a bi-domain state and nucleation free switching in mesoscopic ring magnets," Physical Review Letters, vol. 86, pp. 1098-1101, 2001.

[100] K. Y. Jung, F. L. Teixeira, and R. M. Reano, "Au/SiO2 nanoring plasmon waveguides

2757-2765, 2007.

[101] J. Aizpurua, P. Hanarp, D. Sutherland, M. Käll, G. W. Bryant, and F. Garcia de Abajo,

"Optical properties of gold nanorings," Physical Review Letters, vol. 90, p. 57401, 2003.

[102] T. J. Mullen, M. Zhang, W. Feng, R. J. El-khouri, L. D. Sun, C. H. Yan, T. E. Patten, and G. Liu, "Fabrication and characterization of rare-earth-doped nanostructures on surfaces," Acs Nano, vol. 5, pp. 6539–6545, 2011.

[103] J. Chen, W. S. Liao, X. Chen, T. Yang, S. E. Wark, D. H. Son, J. D. Batteas, and P. S.

Cremer, "Evaporation-induced assembly of quantum dots into nanorings," Acs Nano, vol. 3, pp. 173-180, 2008.

[104] X. Wang, W. Hu, R. Ramasubramaniam, G. H. Bernstein, G. Snider, and M. Lieberman,

"Formation, characterization, and sub-50-nm patterning of organosilane monolayers with embedded disulfide bonds: An engineered self-assembled monolayer resist for electron-beam lithography," Langmuir, vol. 19, pp. 9748-9758, 2003.

[105] D. Granados and J. M. García, "In (Ga) As self-assembled quantum ring formation by molecular beam epitaxy," Applied Physics Letters, vol. 82, pp. 2401-2403, 2003.

[106] A. V. Whitney, B. D. Myers, and R. P. Van Duyne, "Sub-100 nm triangular nanopores fabricated with the reactive ion etching variant of nanosphere lithography and angle-resolved nanosphere lithography," Nano Letters, vol. 4, pp. 1507-1511, 2004.

[107] Y. Li, W. Cai, B. Cao, G. Duan, C. Li, F. Sun, and H. Zeng, "Morphology-controlled 2D ordered arrays by heating-induced deformation of 2D colloidal monolayer," Journal of Materials Chemistry, vol. 16, pp. 609-612, 2006.

[108] F. Sun, C. Y. Jimmy, and X. Wang, "Construction of size-controllable hierarchical nanoporous TiO2 ring arrays and their modifications," Chemistry of Materials, vol. 18, pp. 3774-3779, 2006.

[109] D. Sarkar and M. Farzaneh, "Fabrication of PECVD-grown fluorinated hydrocarbon

nanoparticles and circular nanoring arrays using nanosphere lithography," Applied Surface Science, vol. 254, pp. 3758-3761, 2008.

[110] B. Tan, C. Sow, T. Koh, K. Chin, A. Wee, and C. Ong, "Fabrication of size-tunable gold nanoparticles array with nanosphere lithography, reactive ion etching, and thermal annealing," The Journal of Physical Chemistry B, vol. 109, pp. 11100-11109, 2005.

[111] R. N. Wenzel, "Resistance of solid surfaces to wetting by water," Industrial &

Engineering Chemistry, vol. 28, pp. 988-994, 1936.

[112] C. Genet and T. Ebbesen, "Light in tiny holes," Nature, vol. 445, pp. 39-46, 2007.

[113] S. H. Chang, S. Gray, and G. Schatz, "Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films," Optics Express, vol. 13, pp. 3150-3165, 2005.

[114] A. Cassie and S. Baxter, "Wettability of porous surfaces," Transactions of the Faraday Society, vol. 40, pp. 546-551, 1944.

[115] H. Bethe, "Theory of diffraction by small holes," Physical Review, vol. 66, pp.

163-182, 1944.

[116] C. Delerue, G. Allan, and M. Lannoo, "Optical band gap of Si nanoclusters," Journal of Luminescence, vol. 80, pp. 65-73, 1998.

[117] A. P. Alivisatos, "Semiconductor clusters, nanocrystals, and quantum dots," Science, vol. 271, pp. 933-937, 1996.

[118] X. D. Dang, A. B. Tamayo, J. Seo, C. V. Hoven, B. Walker, and T. Q. Nguyen,

"Nanostructure and optoelectronic characterization of small molecule bulk heterojunction solar cells by photoconductive atomic force microscopy," Advanced Functional Materials, vol. 20, pp. 3314-3321, 2010.

[119] Y. C. Chang, H. W. Wu, H. L. Chen, W. Y. Wang, and L. J. Chen, "Two-Dimensional Inverse Opal ZnO Nanorod Networks with Photonic Band Gap," The Journal of

[120] B. Schwenzer, J. R. Gomm, and D. E. Morse, "Substrate-induced growth of nanostructured zinc oxide films at room temperature using concepts of biomimetic catalysis," Langmuir, vol. 22, pp. 9829-9831, 2006.

[121] L. Sun, C. L. Chien, and P. C. Searson, "Fabrication of nanoporous nickel by electrochemical dealloying," Chemistry of Materials, vol. 16, pp. 3125-3129, 2004.

[122] X. M. Zhao, Y. Xia, and G. M. Whitesides, "Soft lithographic methods for nano-fabrication," Journal of Materials Chemistry, vol. 7, pp. 1069-1074, 1997.

[123] J. Fujita, Y. Ohnishi, Y. Ochiai, and S. Matsui, "Ultrahigh resolution of calixarene negative resist in electron beam lithography," Applied Physics Letters, vol. 68, pp.

1297-1299, 1996.

[124] S. Y. Chou, P. R. Krauss, and P. J. Renstrom, "Imprint of sub‐ 25 nm vias and trenches in polymers," Applied Physics Letters, vol. 67, pp. 3114-3116, 1995.

[125] D. Y. Wang and M. C. Chiu, "Characterization of Cr2O3/CrN duplex coatings for injection molding applications," Surface and Coatings Technology, vol. 137, pp.

164-169, 2001.

[126] C. Gautier and J. Machet, "Study of the growth mechanisms of chromium nitride films deposited by vacuum ARC evaporation," Thin Solid Films, vol. 295, pp. 43-52, 1997.

[127] N. B. Vargaftik, B. N. Volkov, and L. D. Voljak "International tables of the surface tension of water," Journal of Physical and Chemical Reference Data, vol. 12, pp.

817-820, 1983.

[128] C. Jho and M. Carreras, "The effect of viscosity on the drop weight technique for the measurement of dynamic surface tension," Journal of Colloid and Interface Science, vol. 99, pp. 543-548, 1984.

[129] Q. Zhao, Y. Liu, and E. Abel, "Effect of temperature on the surface free energy of amorphous carbon films," Journal of Colloid and Interface Science, vol. 280, pp.

174-183, 2004.

[130] T. Young, "An essay on the cohesion of fluids," Philosophical Transactions of the Royal Society of London, vol. 95, pp. 65-87, 1805.

[131] D. K. Owens and R. Wendt, "Estimation of the surface free energy of polymers,"

Journal of Applied Polymer Science, vol. 13, pp. 1741-1747, 1969.

[132] C. Chiu, P. Yu, C. Chang, C. Yang, M. Hsu, H. Kuo, and M. Tsai, "Oblique electron-beam evaporation of distinctive indium-tin-oxide nanorods for enhanced light extraction from InGaN/GaN light emitting diodes," Optics Express, vol. 17, pp.

21250-21256, 2009.

[133] J. Konle, H. Presting, H. Kibbel, K. Thonke, and R. Sauer, "Enhanced performance of silicon based photodetectors using silicon/germanium nanostructures," Solid-State Electronics, vol. 45, pp. 1921-1925, 2001.

[134] Y. Xu, L. Zhang, D. Wu, Y. H. Sun, Z. X. Huang, X. D. Jiang, X. F. Wei, Z. H. Li, B. Z.

Dong, and Z. H. Wu, "Durable solgel antireflective films with high laser-induced damage thresholds for inertial confinement fusion," Journal of the Optical Society of America B, vol. 22, pp. 905-912, 2005.

[135] L. Zhang, Y. Li, J. Sun, and J. Shen, "Layer-by-layer fabrication of broad-band superhydrophobic antireflection coatings in near-infrared region," Journal of Colloid and Interface Science, vol. 319, pp. 302-308, 2008.

[136] S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, "Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics," Applied Physics Letters, vol. 93, p. 251108, 2008.

[137] H. Y. Koo, D. K. Yi, S. J. Yoo, and D. Y. Kim, "A Snowman‐ like array of colloidal dimers for antireflecting surfaces," Advanced Materials, vol. 16, pp. 274-277, 2004.

[138] D. Lee, M. F. Rubner, and R. E. Cohen, "All-nanoparticle thin-film coatings," Nano Letters, vol. 6, pp. 2305-2312, 2006.

optical glass for near-infrared applications," Journal of Materials Science Letters, vol.

8, pp. 1436-1437, 1989.

[140] B. D. Lucas, J. S. Kim, C. Chin, and L. J. Guo, "Nanoimprint lithography based approach for the fabrication of large‐ area, uniformly‐ oriented plasmonic arrays,"

Advanced Materials, vol. 20, pp. 1129-1134, 2008.

[141] W. W. Hu, K. Sarveswaran, M. Lieberman, and G. H. Bernstein, "Sub-10 nm electron beam lithography using cold development of poly (methylmethacrylate)," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 22, pp. 1711-1716, 2004.

[142] M. Bayati, P. Patoka, M. Giersig, and E. R. Savinova, "An approach to fabrication of metal nanoring arrays," Langmuir, vol. 26, pp. 3549-3554, 2010.

[143] D. Jia and A. Goonewardene, "Two-dimensional nanotriangle and nanoring arrays on silicon wafer," Applied Physics Letters, vol. 88, p. 053105, 2006.

在文檔中 中 華 大 學 (頁 174-191)

相關文件