• 沒有找到結果。

Weighted connected domination

connected AT-free graphs is given in [11]. An O(n + m) algorithm computing a minimum connected dominating set in connected AT-free graphs with diameter greater than three is given in [77].

9 Distance-hereditary graphs

This section presents a linear-time algorithm given by Yeh and Chang [202]

for finding a minimum weighted connected dominating set of a connected distance-hereditary graph G = (V, E) in which each vertex v has a weight w(v) that is a real number. According to Lemma 2.1, assume that the vertex weights are nonnegative.

Lemma 9.4 Suppose hu= {L0, L1, . . . , Lt} is a hanging of a connected distance-hereditary graph at u. For any connected dominating set D and v ∈ Li with 2 ≤ i ≤ t, D ∩ N(v) 6= ∅.

Proof. Choose a vertex y in D that dominates v. Then y ∈ Li−1∪ Li∪ Li+1. If y ∈ Li−1, then y ∈ D ∩ N(v). So, assume that y ∈ Li∪ Li+1. Choose a vertex x ∈ D ∩ (L0∪ L1) and an x-y path

P : x = v1, v2, . . . , vm= y

using vertices only in D. Let j be the smallest index such that {vj, vj+1, . . . , vm}

⊆ Li∪ Li+1∪ . . . ∪ Lt. Then vj ∈ Li, vj−1 ∈ N(vj), and v and vj are in the same component of G − Li−1. By Theorem 9.1, N(v) = N(vj) and so vj−1∈ D ∩ N(v). In any case, D ∩ N(v) 6= ∅.

Theorem 9.5 Suppose G = (V, E) is a connected distance-hereditary graph with a non-negative weight function w on its vertices. Let hu = {L0, L1,. . . , Lt} be a hanging at a vertex u of minimum weight. Consider the set A = {N(v): v ∈ Li with 2 ≤ i ≤ t and v has a minimal neighborhood in Li−1}.

For each N(v) in A, choose one vertex v in N(v) of minimum weight, and let D be the set of all such v. Then D or D ∪ {u} or some {v} with v ∈ V is a minimum weighted connected dominating set of G.

Proof. For any x ∈ Li with 2 ≤ i ≤ t, by Theorem 9.2, N(x) includes some N(v) in A. This gives Claim 1.

Claim 1. For any x ∈ Li with 2 ≤ i ≤ t, x ∈ N [Li−1∩ D].

Claim 2. D ∪ {u} is a connected dominating set of G.

Proof of Claim 2. By Claim 1 and N [u] = L1∪ {u}, D ∪ {u} is a dominating set of G. Also, by Claim 1, for any vertex x in D ∪ {u} there exists an x-u path using vertices only in D ∪ {u}, i.e., G[D ∪ {u}] is connected. 2

Suppose M is a minimum weighted connected dominating set of G. Accord-ing to Lemma 9.4, M ∩ N(v) 6= ∅ for each N(v) ∈ A, say v∗∗ ∈ M ∩ N(v).

Since any two sets in A are disjoint, |M | ≥ |A| = |D|.

Case 1. |M | = 1. The theorem is obvious in this case.

Case 2. |M | > |D|. In this case, there is at least one vertex x in M that is not a v∗∗. Then

w(M ) ≥X

v∗∗w(v∗∗) + w(x) ≥X

vw(v) + w(u) = w(D ∪ {u}).

This together with Claim 2 gives that D ∪{u} is a minimum weighted connected dominating set of G.

Case 3. |M | = |D| ≥ 2. Since A contains pairwise disjoint sets, M = {v∗∗: N(v) ∈ A}. Then w(M ) =P

v∗∗w(v∗∗) ≥P

vw(v) = w(D).

For any two vertices x and y in D, x∗∗ and y∗∗ are in M . Since G[M ] is connected, there is an x∗∗-y∗∗ path in G[M ]:

x∗∗= v0∗∗, v∗∗1 , . . . , v∗∗n = y∗∗.

For any 1 ≤ i ≤ n, since vi and vi∗∗ are both in N(vi) ∈ A, by Theorem 9.3, NV\N(vi)(vi) = NV\N(vi)(v∗∗i ). But vi−1∗∗ ∈ NV\N(vi)(vi∗∗). Therefore vi−1∗∗ ∈ NV\N(vi)(vi) and vi∈ NV\N(vi−1)(vi−1∗∗ ). Also, that vi−1 and vi−1∗∗ are both in N(vi−1) ∈ A implies that NV\N(vi−1)(vi−1 ) = NV\N(vi−1)(vi−1∗∗ ). Then vi ∈ NV\N(vi−1)(vi−1). This proves that vi−1 is adjacent to vi for 1 ≤ i ≤ n and then

x= v0, v1, . . . , vn = y is an x-y path in G[D], i.e., G[D] is connected.

For any x in V , since M is a dominating set, x ∈ N [v∗∗] for some N(v) ∈ A. Note that v∗∗ and v are both in N(v). According to Theorem 9.3, NV\N(v)(v∗∗) = NV\N(v)(v). In the case of x 6∈ N(v), x ∈ N [v∗∗] implies x ∈ N [v], i.e., D dominates x. In the case of x ∈ N(v), NV\N(v)(v) = NV\N(v)(x). Since G[D] is connected and |D| ≥ 2, v is adjacent to some y ∈ D \ N(v). Then x is also adjacent to y, i.e., D dominates x. In any case, D is a dominating set. Therefore D is a minimum weighted connected dominating set of G.

Lemma 2.1 and Theorem 9.5 together give an efficient algorithm for the weighted connected domination problem in distance-hereditary graphs as fol-lows. To implement the algorithm efficiently, the set A is not actually found.

Instead, the following step is performed for each 2 ≤ i ≤ t. Sort the vertices in Li such that

|N(x1)| ≤ |N(x2)| ≤ . . . ≤ |N(xj)|.

Then process N(xk) for k from 1 to j. At iteration k, if N(xk) ∩ D = ∅, then N(xk) is in A and choose a vertex of minimum weight to put it into D;

otherwise N(xk) 6∈ A and do nothing.

Algorithm WConDomDH. Find a minimum weighted connected dominating set of a connected distance-hereditary graph.

Input: A connected distance-hereditary graph G = (V, E) and a weight w(v) of real number for each v ∈ V .

Output: A minimum weighted connected dominating set D of graph G.

Method.

D ← ∅;

let V= {v ∈ V : w(v) < 0};

w(v) ← 0 for each v ∈ V;

let u be a vertex of minimum weight in V ;

determine the hanging hu= (L0, L1, . . . , Lt) of G at u;

for i = 2 to t do

let Li= {x1, x2, . . . , xj};

sort Li such that |N(xi1)| ≤ |N(xi2)| ≤ . . . ≤ |N(xij)|;

for k = 1 to j do

if N(xik) ∩ D = ∅ then D ← D ∪ {y} where y is a vertex of minimum weight in N(xik);

end do;

if not (L1⊆ N [D] and G[D] is connected) then D ← D ∪ {u};

for v ∈ V that dominates V do if w(v) < w(D) then D ← {v};

D ← D ∪ V.

Theorem 9.6 Algorithm WConDomDH gives a minimum weighted connected dominating set of a connected distance-hereditary graph in linear time.

Proof. The correctness of the algorithm follows from Lemma 2.1 and Theorem 9.5. For each i, sort Li by using a bucket sort. Then the algorithm runs in O(|V | + |E|) time.

References

[1] S. Arnborg. Efficient algorithms for combinatorial problems on graphs with bounded decomposability–a survey. Bit, 25:2–23, 1985.

[2] S. Arnborg, S. T. Hedetniemi and A. Proskurowski, editors. Efficient Algorithms and Partial k-trees, Special Issue Discrete Math., volume 54.

1994.

[3] S. Arnborg and A. Proskurowski. Linear time algorithms for NP-hard problems restricted to partial k-trees. Discrete Appl. Math., 23:11–24,

1989. (3.6)

[4] K. Arvind, H. Breu, M. S. Chang, D. G. Kirkpatrick, F. Y. Lee, Y.

D. Liang, K. Madhukar, C. Pandu Rangan and A. Srinivasan. Efficient algorithms in cocomparability and trapezoid graphs. Manuscript, 1996.

(8)

[5] K. Arvind and C. Pandu Rangan. Efficient algorithms for domination problems on cocomparability graphs. Technical Report TR-TCS-909-18, Indian Institute of Technology, 1990.

[6] K. Arvind and C. Pandu Rangan. Transitive reduction and efficient polylog algorithms on permutation graphs. Submitted, 1996.

[7] T. Asano. Dynamic programming on intervals. Internat. J. Comput.

Geom. Appl., 3:323–330, 1993.

[8] M. J. Atallah and S. R. Kosaraju. An efficient algorithm for maxdomi-nance, with applications. Algorithmica, 4:221–236, 1989.

[9] M. J. Atallah, G. K. Manacher and J. Urrutia. Finding a minimum inde-pendent dominating set in a permutation graph. Discrete Appl. Math.,

21:177–183, 1988. (7)

[10] B. S. Baker. Approximation algorithms for NP-complete problems on planar graphs. In 24th Annual Symp. on the Foundations of Computer Science, pages 265–273, 1983.

[11] H. Balakrishnan, A. Rajaraman and C. Pandu Rangan. Connected dom-ination and Steiner set on asteroidal triple-free graphs. In F. Dehne, J.

R. Sack, N. Santoro and S. Whitesides, editors, Proc. Workshop on Al-gorithms and Data Structures (WADS’93), volume 709, pages 131–141, Montreal, Canada, 1993. Springler-Verlag, Berlin. (8) [12] H. J. Bandelt and H. M. Mulder. Distance-hereditary graphs. J. Comb.

Theory, Series B, 41:182–208, 1986. (9.1)

[13] D. W. Bange, A. E. Barkauskas and P. J. Slater. Efficient dominating sets in graphs. In R. D. Ringeisen and F. S. Roberts, editors, Applications of Discrete Mathematics, pages 189–199. SIAM, Philadelphia, PA, 1988.

(3.3, 5.2)

[14] R. Bar-Yehuda and U. Vishkin. Complexity of finding k-path-free dom-inating sets in graphs. Inform. Process. Lett., 14:228–232, 1982.

[15] R. E. Bellman and S. E. Dreyfus. Applied Dynamic Programming.

Prince-ton University Press, 1962. (3.3)

[16] A. A. Bertossi. Dominating sets for split and bipartite graphs. Inform.

Process. Lett., 19:37–40, 1984. (5.2)

[17] A. A. Bertossi. Total domination in interval graphs. Inform. Process.

Lett., 23:131–134, 1986. (4.3)

[18] A. A. Bertossi. On the domatic number of interval graphs. Inform.

Process. Lett., 28:275–280, 1988. (4.2)

[19] A. A. Bertossi and M. A. Bonuccelli. Some parallel algorithms on interval graphs. Discrete Appl. Math., 16:101–111, 1987.

[20] A. A. Bertossi and A. Gori. Total domination and irredundance in weighted interval graphs. SIAM J. Discrete Math., 1:317–327, 1988. (4.3) [21] A. A. Bertossi and S. Moretti. Parallel algorithms on circular-arc graphs.

Inform. Process. Lett., 33:275–281, 1990.

[22] T. A. Beyer, A. Proskurowski, S. T. Hedetniemi and S. Mitchell. Inde-pendent domination in trees. Congr. Numer., 19:321–328, 1977. (3.3)

[23] N. L. Biggs, E. K. Lloyd and R. J. Wilson. Graph Theory 1736–1936.

Clarendon Press, Oxford, 1986. (1)

[24] J. R. S. Blair, W. Goddard, S. T. Hedetniemi, S. Horton, P. Jones and G.

Kubicki. On domination and reinforcement numbers in trees. Discrete Math., 308(7):1165–1175, 2008.

[25] H. L. Bodlaender. Dynamic programming on graphs with bounded treewidth. In T. Lepisto and A. Salomaa, editors, Lecture Notes in Comput. Sci., Proc. 15th Internat. Colloq. on Automata, Languages and Programming, volume 317, pages 105–118, Heidelberg, 1988. Springer Verlag.

[26] K. S. Booth and J. H. Johnson. Dominating sets in chordal graphs. SIAM

J. Comput., 11:191–199, 1982. (5.2)

[27] S. Booth and S. Lueker. Testing for the consecutive ones property, inter-val graphs, and graph planarity using PQ-tree algorithms. J. Comput.

Sys. Sci., 13:335–379, 1976. (4.1)

[28] A. Brandst¨adt. The computational complexity of feedback vertex set, Hamiltonian circuit, dominating set, Steiner tree and bandwidth on spe-cial perfect graphs. J. Inform. Process. Cybernet., 23:471–477, 1987.

[29] A. Brandst¨adt, V. D. Chepoi and F. F. Dragan. The algorithmic use of hypertree structure and maximum neighbourhood orderings. In E.

W. Mayr, G. Schmidt and G. Tinhofer, editors, Lecture Notes in put. Sci., 20th Internat. Workshop Graph-Theoretic Concepts in Com-puter Science (WG’94), volume 903, pages 65–80, Berlin, 1995. Springer-Verlag.

[30] A. Brandst¨adt and F. F. Dragan. A linear-time algorithm for connected r-domination and Steiner tree on distance-hereditary graphs. Technical

Report SM-DU-261, Univ. Duisburg, 1994. (9.2)

[31] A. Brandst¨adt, F. F. Dragan, V. D. Chepoi and V. I. Voloshin. Dually chordal graphs. In Lecture Notes in Comput. Sci., 19th Internat. Work-shop Graph-Theoretic Concepts in Computer Science (WG’93), volume 790, pages 237–251, Berlin, 1993. Springer-Verlag.

[32] A. Brandst¨adt and D. Kratsch. On the restriction of some NP-complete graph problems to permutation graphs. In L. Budach, editor, Lecture Notes in Comput. Sci., Proc. FCT’85, volume 199, pages 53–62, Berlin,

1985. Springer-Verlag. (7)

[33] A. Brandst¨adt and D. Kratsch. On domination problems on permutation and other graphs. Theoret. Comput. Sci., 54:181–198, 1987. (7) [34] B. Bresar, M. A. Henning and D. F. Rall. Rainbow domination in graphs.

Taiwanese J. Math., 12(1):213–225, 2008.

[35] H. Breu and D. G. Kirkpatrick. Algorithms for dominating and Steiner set problems in cocomparability. Manuscript, 1996. (8) [36] M. W. Broin and T. J. Lowe. A dynamic programming algorithm for covering problems with greedy totally balanced contraint matrices. SIAM J. Algeb. Discrete Methods, 7:348-357, 1986. (6.2) [37] M. Burlet and J. P. Uhry. Parity graphs. Annals of Discrete Math.,

21:253–277, 1984. (9.1)

[38] D. I. Carson. Computational Aspects of Some Generalized Domination Parameters. PhD thesis, Univ. Natal, 1995.

[39] D. I. Carson and O. R. Oellermann. Linear time algorithms for capacity-domination in trees and series parallel graphs. Submitted, 1997.

[40] G. J. Chang. Labeling algorithms for domination problems in sun-free chordal graphs. Discrete Appl. Math., 22:21–34, 1988/89. (6.2) [41] G. J. Chang. Total domination in block graphs. Oper. Res. Lett., 8:53–57,

1989. (3.6)

[42] G. J. Chang. The domatic number problem. Discrete Math., 125:115–

122, 1994.

[43] G. J. Chang. The weighted independent domination problem is NP-complete for chordal graphs. Discrete Appl. Math., 143:351–352, 2004.

(5.3)

[44] G. J. Chang and G. L. Nemhauser. The k-domination and k-stability problems on graphs. Technical Report TR-540, School Oper. Res. Indus-trial Eng., Cornell Univ., 1982.

[45] G. J. Chang and G. L. Nemhauser. R-domination of block graphs. Oper.

Res. Lett., 1:214–218, 1982. (3.6)

[46] G. J. Chang and G. L. Nemhauser. The k-domination and k-stability on sun-free chordal graphs. SIAM J. Algebraic Discrete Methods, 5:332–345,

1984. (6.2)

[47] G. J. Chang and G. L. Nemhauser. Covering, packing and generalized perfection. SIAM J. Algeb. Discrete Methods, 6:109–132, 1985. (6.2) [48] G. J. Chang, C. Pandu Rangan and S. R. Coorg. Weighted independent perfect domination on cocomparability graphs. Discrete Appl. Math., 63:215–222, 1995.

[49] G. J. Chang, J. Wu and X. Zhu. Rainbow domination on trees. Discrete

Appl. Math., 158(1):8–12, 2010. (3.2)

[50] M.-S. Chang. Efficient algorithms for the domination problems on in-terval graphs and circular-arc graphs. In IFIP Transactions A-12, Proc.

IFIP 12th World Congress, volume 1, pages 402–408, 1992. (4.3)

[51] M.-S. Chang. Weighted domination on cocomparability graphs. In Lec-ture Notes in Comput. Sci., Proc. ISAAC’95, volume 1004, pages 121–

131, Berlin, 1995. Springer-Verlag. (8)

[52] M.-S. Chang, F.-H. Hsing and S.-L. Peng. Irredundance in weighted in-terval graphs. In Proc. National Computer Symp., pages 128–137, Taipei,

Taiwan, 1993. (4.3)

[53] M.-S. Chang and C.-C. Hsu. On minimum intersection of two minimum dominating sets of interval graphs. Discrete Appl. Math., 78(1-3):41–50, 1997.

[54] M.-S. Chang and Y.-C. Liu. Polynomial algorithms for the weighted per-fect domination problems on chordal and split graphs. Inform. Process.

Lett., 48:205–210, 1993.

[55] M.-S. Chang and Y.-C. Liu. Polynomial algorithms for weighted perfect domination problems on interval and circular-arc graphs. J. Inform. Sci.

Engineering, 10:549–568, 1994. (4.3)

[56] M.-S. Chang, S. Wu, G. J. Chang and H.-G. Yeh. Domination in distance-hereditary graphs. Discrete Appl. Math., 116(1-2):103–113, 2002.

[57] G. A. Cheston, G. H. Fricke, S. T. Hedetniemi and D. P. Jacobs. On the computational complexity of upper fractional domination. Discrete

Appl. Math., 27:195–207, 1990. (3.4)

[58] E. Cockayne, S. Goodman and S. Hedetniemi. A linear algorithm for the domination number of a tree. Inform. Process. Lett., 4(2):41–44, 1975.

(1, 3.2)

[59] E. J. Cockayne and S. T. Hedetniemi. A linear algorithm for the max-imum weight of an independent set in a tree. In Proc. Seventh South-eastern Conf. on Combinatorics, Graph Theory and Computing, pages 217–228, Winnipeg, 1976. Utilitas Math.

[60] E. J. Cockayne, G. MacGillivray and C. M. Mynhardt. A linear algorithm for 0-1 universal minimal dominating functions of trees. J. Combin.

Math. Combin. Comput., 10:23–31, 1991.

[61] E. J. Cockayne and F. D. K. Roberts. Computation of minimum inde-pendent dominating sets in graphs. Technical Report DM-76-IR, Dept.

Math., Univ. Victoria, 1974.

[62] E. J. Cockayne and F. D. K. Roberts. Computation of dominating par-titions. Infor., 15:94–106, 1977.

[63] C. J. Colbourn, J. M. Keil and L. K. Stewart. Finding minimum domi-nating cycles in permutation graphs. Oper. Res. Lett., 4:13–17, 1985.

[64] C. J. Colbourn and L. K. Stewart. Permutation graphs: connected dom-ination and Steiner trees. Discrete Math., 86:179–189, 1990. (7)

[65] C. Cooper and M. Zito. An analysis of the size of the minimum dom-inating sets in random recursive trees, using the Cockayne-Goodman-Hedetniemi algorithm Disctere Appl. Math., 157(9):2010–2014, 2009.

[66] D. G. Corneil. Lexicographic breadth first search–a survey. Lecture Notes

Comput. Sci., 3353:1–19, 2004. (*4.1)

[67] D. G. Corneil. A simple 3-sweep LBFS algorithm for the recognition of unit interval graphs. Discrete Appl. Math., 138:371–379, 2004. (*4.1) [68] D. G. Corneil and J. M. Keil. A dynamic programming approach to the dominating set problem on k-trees. SIAM J. Algeb. Discrete Methods,

8:535–543, 1987. (3.6, 5.2)

[69] D. G. Corneil, E. Kohler and J-M. Lanlignel. On end-vertices of Lexico-graphic Breadth First Search. Discrete Appl. Math., 158:434–443, 2010.

(*4.1)

[70] D. G. Corneil, H. Lerchs and L. Stewart. Complement reducible graphs.

Discrete Appl. Math., 3:163–174, 1981. (9.1)

[71] D. G. Corneil, S. Olariu and L. Stewart. The ultimate interval graph recognition algorithm? (extended abstract). in: Proc. Ninth Annual ACM-SIAM Symp. Discrete Alg., ACM, New York, SIAM, Philadelphia

1998, pp. 175–180. (*4.1)

[72] D. G. Corneil, S. Olariu and L. Stewart. The LBFS structure and recog-nition of interval graphs. SIAM J. Discrete Math., 23:1905–1953, 2009.

(4.1)

[73] D. G. Corneil, S. Olariu and L. Stewart. A linear time algorithm to compute a dominating path in an AT-free graph. Inform. Process. Lett.,

54:253–258, 1995. (8)

[74] D. G. Corneil, S. Olariu and L. Stewart. Asteroidal triple-free graphs.

SIAM J. Discrete Math., 790:211–224, 1994. (8) [75] D. G. Corneil, S. Olariu and L. Stewart. Computing a dominating pair in an asteroidal triple-free graph in linear time. In Proc. 4th Algorithms and Data Structures Workshop, LNCS 955, volume 955, pages 358–368.

Springer, 1995.

[76] D. G. Corneil, S. Olariu and L. Stewart. A linear time algorithm to com-pute dominating pairs in asteroidal triple-free graphs. In Lecture Notes in Comput. Sci., Proc. 22nd Internat. Colloq. on Automata, Languages and Programming (ICALP’95), volume 994, pages 292–302, Berlin, 1995.

Springer-Verlag.

[77] D. G. Corneil, S. Olariu and L. Stewart. Linear time algorithms for dominating pairs in asteroidal triple-free graphs. SIAM J. Comput.,

944:292–302, 1995. (8)

[78] D. G. Corneil and Y. Perl. Clustering and domination in perfect graphs.

Discrete Appl. Math., 9:27–39, 1984. (5.2)

[79] D. G. Corneil, Y. Perl and L. Stewart Burlingham. A linear recognition algorithm for cographs. SIAM J. Comput., 14:926–934, 1985. (9.1) [80] D. G. Corneil and L. K. Stewart. Dominating sets in perfect graphs.

Discrete Math., 86:145–164, 1990. (7)

[81] J. Dabney, B. C. Dean and S. T. Hedetniemi. A Linear-Time algorithm for broadcast domination in a tree Networks, 53(2):160–169, 2009.

[82] P. Damaschke, H. M¨uller and D. Kratsch. Domination in convex and chordal bipartite graphs. Inform. Process. Lett., 36:231–236, 1990. (5.2) [83] A. D’Atri and M. Moscarini. Distance-hereditary graphs, Steiner trees, and connected domination. SIAM J. Comput., 17:521–538, 1988. (9.1, 9.2)

[84] D. P. Day, O. R. Oellermann and H. C. Swart. Steiner distance-hereditary graphs. SIAM J. Discrete Math. 7:437–442, 1994. (9.1) [85] C. F. De Jaenisch. Applications de l’Analyse mathematique au Jeu des

Echecs. Petrograd, 1862. (1)

[86] G. S. Domke, J. H. Hattingh, S. T. Hedetniemi, R. C. Laskar and L. R.

Markus. Restrained domination in graphs. Discrete Math., 203(1-3):61–

69, 1999.

[87] S. E. Dreyfus and A. M. Law. The Art and Theory of Dynamic

Program-ming. Academic Press, New York, 1977. (3.3)

[88] J. E. Dunbar, W. Goddard, S. Hedetniemi, A. A. McRae. and M. A.

Henning. The algorithmic complexity of minus domination in graphs.

Discrete Appl. Math., 68(1-2):73–84, 1996.

[89] S. Even, A. Pnueli and A. Lempel. Permutation graphs and transitive graphs. J. Assoc. Comput. Mach., 19(3):400–410, 1972. (7) [90] L. Euler. Solutio problematis ad geometriam situs pertinentis. Acad. Sci.

Imp. Petropol., 8:128–140, 1736. (1)

[91] M. Farber. Applications of Linear Programming Duality to Problems In-volving Independence and Domination. PhD thesis, Simon Fraser Univ., 1981.

[92] M. Farber. Domination and duality in weighted trees. Congr. Numer.,

33:3–13, 1981. (3.4)

[93] M. Farber. Independent domination in chordal graphs. Oper. Res. Lett.,

1:134–138, 1982. (5.3)

[94] M. Farber. Characterizations of strongly chordal graphs. Discrete Math., 43:173–189, 1983.

[95] M. Farber. Domination, independent domination and duality in strongly chordal graphs. Discrete Appl. Math., 7:115–130, 1984. (6.1, 6.2) [96] M. Farber and J. M. Keil. Domination in permutation graphs. J.

Algo-rithms, 6:309–321, 1985. (7)

[97] A. M. Farley, S. T. Hedetniemi and A. Proskurowski. Partitioning trees:

matching, domination and maximum diameter. Internat. J. Comput.

Inform. Sci., 10:55–61, 1981. (3.5)

[98] M. R. Fellows and M. N. Hoover. Perfect domination. Australas. J.

Combin., 3:141–150, 1991. (3.3, 5.2)

[99] C. M. H. de Figueiredo, J. Meidanis and C. P. de Mello. A linear-time algorithm for proper interval graph recognition. Inform. Process. Lett.,

56:179–184, 1995. (*4.1)

[100] G. H. Fricke, M. A. Henning, O. R. Oellermann and H. C. Swart. An efficient algorithm to compute the sum of two distance domination pa-rameters. Discrete Appl. Math., 68:85–91, 1996.

[101] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, New York, 1979. (1, 5.1, 5.2)

[102] F. Gavril. Algorithms for minimum colorings, maximum clique, minimum coverings by cliques and maximum independent set of a chordal graph.

SIAM J. Comput., 1:180–187, 1972.

[103] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs.

Aca-demic Press, New York, 1980. (2.3,

5.1)

[104] M. C. Golumbic. Algorithmic aspect of perfect graphs. Annals of Discrete

Math., 21:301–323, 1984. (5.1)

[105] J. Guo, R. Niedermeier and D. Raible. Improved algorithms and complex-ity results for power domination in graphs. Algorithmica, 52(2):177–202,

2008. (3.5)

[106] M. Habib, R. McConnell, C. Paul and L. Viennot. Lex-BFS and parti-tion refinement, with applicaparti-tions to transitive orientaparti-tion, interval graph recognition and consecutive ones testing. Theor. Comput. Sci., 234:, 59–

84, 2000. (4.1)

[107] P. H. Hammer and F. Maffray. Completely separable graphs. Discrete

Appl. Math., 27:85–99, 1990. (9.1)

[108] E. O. Hare and S. T. Hedetniemi. A linear algorithm for computing the knight’s domination number of a K × N chessboard. Congr. Numer., 59:115–130, 1987.

[109] J. H. Hattingh and M. A. Henning. The complexity of upper distance irredundance. Congr. Numer., 91:107–115, 1992.

[110] J. H. Hattingh, M. A. Henning and P. J. Slater. On the algorithmic complexity of signed domination in graphs. Australas. J. Combin., 12, 1995. 101–112.

[111] J. H. Hattingh, M. A. Henning and J. L. Walters. On the computa-tional complexity of upper distance fraccomputa-tional domination. Australas. J.

Combin., 7:133–144, 1993.

[112] J. H. Hattingh and R. C. Laskar. On weak domination in graphs. Ars Combin. 49:205–216, 1998.

[113] T. W. Haynes, S. M. Hedetniemi, S. T. Hedetniemi and M. A. Henning.

Domination in graphs applied to electric power networks. SIAM J. Disc.

Math., 15(4):519–529, 2002. (3.5)

[114] T. W. Haynes, S. T. Hedetniemi and P. J. Slater. Fundamentals of Domination in Graphs. Marcel Dekker, Inc., New York, 1997. (1) [115] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, editors. Domination

in Graphs: Advanced Topics. Marcel Dekker, Inc., New York, 1997.

[116] S. M. Hedetniemi, S. T. Hedetniemi and D. P. Jacobs. Private domina-tion: theory and algorithms. Congr. Numer., 79:147–157, 1990. (3.3, 5.2)

[117] S. M. Hedetniemi, S. T. Hedetniemi and R. C. Laskar. Domination in trees: models and algorithms. In Y. Alavi, G. Chartrand, L. Lesniak, D.

R. Lick and C. E. Wall, editors, Graph Theory with Applications to Al-gorithms and Computer Science, pages 423–442. Wiley, New York, 1985.

[118] S. M. Hedetniemi, A. A. McRae and D. A. Parks. Complexity results.

In T. W. Haynes, S. T. Hedetniemi and P. J. Slater, editors, Domination in Graphs: Advanced Topics, Chapter 9. Marcel Dekker, Inc., 1997.

[119] S. T. Hedetniemi and R. C. Laskar. Bibliography on domination in graphs and some basic definitions of domination parameters. Discrete Math., 86:257–277, 1990.

[120] S. T. Hedetniemi, R. C. Laskar and J. Pfaff. A linear algorithm for finding a minimum dominating set in a cactus. Discrete Appl. Math.,

13:287–292, 1986. (3.6)

[121] P. Hell and J. Huang. Certifying LexBFS recognition algorithms for proper interval graphs and proper interval bigraphs. SIAM J. Discrete

Math. 18:55–570, 2005. (*4.1)

[122] A. J. Hoffman, A. W. J. Kolen and M. Sakarovitch. Totally-balanced and greedy matrices. SIAM J. Algebraic and Discrete Methods, 6:721–730,

1985. (6.1, 6.2)

[123] E. Howorka. A characterization of distance-hereditary graphs. Quart. J.

Math. Oxford Ser. 2, 28:417–420, 1977. (9.1)

[124] W. Hsu. The distance-domination numbers of trees. Oper. Res. Lett.,

1:96–100, 1982. (3.3)

[125] W.-L. Hsu. A simple test for interval graphs. Lecture Notes Comput.

Sci., 657:11–16, 1993. (4.1)

[126] W.-L. Hsu and T.-H. Ma. Fast and simple algorithms for recognizing chordal comparability graphs and interval graphs. SIAM J. Comput.,

28:1004–1020, 1999. (4.1)

[127] W.-L. Hsu and R. M. McConnell. PC trees and circular-ones arrange-ments. Theor. Comput. Sci., 296:59–74, 2003. (4.1) [128] S. F. Hwang and G. J. Chang. The k-neighbor domination problem in block graphs. European J. Oper. Res., 52:373–377, 1991. (3.6, 5.2) [129] O. H. Ibarra and Q. Zheng. Some efficient algorithms for permutation

graphs. J. Algorithms, 16:453–469, 1994. (8)

[130] R. W. Irving. On approximating the minimum independent dominating set. Inform. Process. Lett., 37(4):197–200, 1991.

[131] M. S. Jacobson and K. Peters. Complexity questions for n-domination and related parameters. Congr. Numer., 68:7–22, 1989.

[132] T. S. Jayaram, G. Sri Karishna and C. Pandu Rangan. A unified ap-proach to solving domination problems on block graphs. Report TR-TCS-90-09, Dept. of Computer Science and Eng., Indian Inst. of

Tech-nology, 1990. (3.6)

[133] D. S. Johnson. The NP-completeness column: an ongoing guide. J.

Algorithms, 5:147–160, 1984. (5.2)

[134] D. S. Johnson. The NP-completeness column: an ongoing guide. J.

Algorithms, 6:291–305,434–451, 1985. (5.2)

[135] L. Kang, M. Y. Sohn and T. C. E. Cheng. Paired-domination in inflated graphs. Theorect. Comput. Sci., 320(2-3):485–494, 2004.

[136] O. Kariv and S. L. Hakimi. An algorithmic approach to network location problems I: the p-centers. SIAM J. Appl. Math., 37:513–538, 1979.

[137] O. Kariv and S. L. Hakimi. An algorithmic approach to network location problems II: the p-medians. SIAM J. Appl. Math., 37:539–560, 1979.

[138] J. M. Keil. Total domination in interval graphs. Inform. Process. Lett., 22:171–174, 1986.

[139] J. M. Keil. The complexity of domination problems in circle graphs.

Discrete Appl. Math., 42:51–63, 1993.

[140] J. M. Keil and D. Schaefer. An optimal algorithm for finding dominating cycles in circular-arc graphs. Discrete Appl. Math., 36:25–34, 1992.

[141] T. Kikuno, N. Yoshida and Y. Kakuda. The NP-completeness of the dominating set problem in cubic planar graphs. Trans. IEEE, pages 443–444, 1980.

[142] T. Kikuno, N. Yoshida and Y. Kakuda. A linear algorithm for the dom-ination number of a series-parallel graph. Discrete Appl. Math., 5:299–

311, 1983.

[143] E. K¨ohler. Connected domination on trapezoid graphs in O(n) time.

Manuscript, 1996. (8)

[144] A. Kolen. Solving covering problems and the uncapacitated plant loca-tion problem on trees. Eropean J. Oper. Res., 12:266-278, 1983 (3.4) [145] N. Korte and R. H. Mohring. An incremental linear-time algorithm for recognizing interval graphs. SIAM J. Comput., 18:68–81, 1989. (4.1) [146] D. Kratsch. Finding dominating cliques efficiently, in strongly chordal graphs and undirected path graphs. Discrete Math., 86:225–238, 1990.

(6.2)

[147] D. Kratsch. Algorithms. In T. W. Haynes, S. T. Hedetniemi and P.

J. Slater, editors, Domination in Graphs: Advanced Topics, chapter 8.

Marcel Dekker, Inc., 1997.

[148] D. Kratsch, R. M. McConnel, K. Mehlhorn and J. P. Spinrad. Certify-ing algorithms for recognizCertify-ing interval graphs and permutation graphs.

SIAM J. Discrete Math., 36:326–353, 2006. (*4.1) [149] D. Kratsch and L. Stewart. Domination on cocomparability graphs.

SIAM J. Discrete Math., 6(3):400–417, 1993. (8) [150] R. Laskar, J. Pfaff, S. M. Hedetniemi and S. T. Hedetniemi. On the algorithmic complexity of total domination. SIAM J. Algebraic Discrete

Methods, 5(3):420–425, 1984. (3.2)

[151] E. L. Lawler and P. J. Slater. A linear time algorithm for finding an op-timal dominating subforest of a tree. In Graph Theory with Applications to Algorithms and Computer Science, pages 501–506. Wiley, New York, 1985.

[152] Y. D. Liang, C. Rhee, S. K. Dall and S. Lakshmivarahan. A new approach for the domination problem on permutation graphs. Inform. Process.

Lett., 37:219–224, 1991.

[153] C.-S. Liao and G. J. Chang. Algorithmic aspect of k-tuple domination in graphs. Taiwanese J. Math., 6(3):415-420, 2002.

[154] M. Livingston and Q. F. Stout. Constant time computation of minimum dominating sets. Congr. Numer., 105:116–128, 1994.

[155] P. J. Looges and S. Olariu. Optimal greedy algorithms for indifference graphs. Comput. Math. Applica., 25:15–25, 1993. (*4.1)

[156] E. Loukakis. Two algorithms for determining a minimum independent dominating set. Internat. J. Comput. Math., 15:213–229, 1984.

[157] T. L. Lu, P. H. Ho and G. J. Chang. The domatic number problem in interval graphs. SIAM J. Discrete Math., 3:531–536, 1990. (4.2) [158] K. L. Ma and C. W. H. Lam. Partition algorithm for the dominating set

problem. Congr. Numer., 81:69–80, 1991.

[159] G. K. Manacher and T. A. Mankus. Finding a domatic partition of an interval graph in time O(n). SIAM J. Discrete Math., 9:167–172, 1996.

(4.2)

[160] M. V. Marathe, H. B. Hunt III and S. S. Ravi. Efficient approxima-tion algorithms for domatic partiapproxima-tion and on-line coloring of circular arc graphs. Discrete Appl. Math., 64:135–149, 1996.

[161] R. M. McConnell and J. P. Spinrad. Modular decomposition and

transi-tive orientation. Manuscript, 1995. (8)

[162] A. A. McRae and S. T. Hedetniemi. Finding n-independent dominating sets. Congr. Numer., 85:235–244, 1991.

[163] S. L. Mitchell and S. T. Hedetniemi. Edge domination in trees. Congr.

Numer., 19:489–509, 1977. (3.2)

[164] S. L. Mitchell and S. T. Hedetniemi. Independent domination in trees.

Congr. Numer., 29:639–656, 1979.

[165] S. L. Mitchell, S. T. Hedetniemi and S. Goodman. Some linear algorithms on trees. Congr. Numer., 14:467–483, 1975.

[166] H. M¨uller and A. Brandst¨adt. The NP-completeness of STEINER TREE and DOMINATING SET for chordal bipartite graphs. Theoret. Comput.

Sci., 53:257–265, 1987. (5.2)

[167] K. S. Natarajan and L. J. White. Optimum domination in weighted trees. Inform. Process. Lett., 7:261–265, 1978. (3.3) [168] G. L. Nemhauser. Introduction to Dynamic Programming. John Wiley

& Sons, 1966. (3.3)

[169] S. L. Peng and M. S. Chang. A new approach for domatic number problem on interval graphs. Proc. National Comp. Symp. R. O. C.,

pages 236–241, 1991. (4.2)

[170] S. L. Peng and M. S. Chang. A simple linear time algorithm for the domatic partition problem on strongly chordal graphs. Inform. Process.

Lett., 43:297–300, 1992. (4.2, 6.3)

[171] J. Pfaff, R. Laskar and S. T. Hedetniemi. Linear algorithms for indepen-dent domination and total domination in series-parallel graphs. Congr.

Numer., 45:71–82, 1984.

[172] A. Pnueli, A. Lempel and S. Even. Transitive orientation of graphs and identification of permutation graphs. Canad. J. Math., 23:160–175, 1971.

(7)

[173] A. Proskurowski. Minimum dominating cycles in 2-trees. Internat. J.

Comput. Inform. Sci., 8:405–417, 1979. (3.6)

[174] S. Rajbaum. Improved tree decomposition based algorithms for domination-like problems. Lecture Notes Compy. Sci., 2286:613-627, 2002.

[175] G. Ramalingam and C. Pandu Rangan. Total domination in interval graphs revisited. Inform. Process. Lett., 27:17–21, 1988. (4.3) [176] G. Ramalingam and C. Pandu Rangan. A unified approach to domination problems in interval graphs. Inform. Process. Lett., 27:271–274, 1988.

(4.1, 4.3–4.6)

[177] A. Raychaudhuri. On powers of interval and unit interval graphs. Cong.

Numer., 59:235–242, 1987. (*4.1)

[178] F. S. Roberts. On the compatibility between a graph and a simple order.

J. Combin. Theory B, 11:28–38, 1971. (*4.1)

[179] J. S. Rohl. A faster lexicographic N queens algorithm. Inform. Process.

Lett., 17:231–233, 1983.

[180] D. J. Rose, R. E. Tarjan and G. S. Lueker. Algorithmic aspects of vertex elimination on graphs. SIAM J. Discrete Math., 5:266–283, 1976. (*4.1) [181] P. Scheffler. Linear-time algorithms for NP-complete problems restricted to partial k-trees. Technical Report 03/87, IMATH, Berlin, 1987. (3.6) [182] W.-K. Shih and W.-L. Hsu. A new planarity test. Theor. Comput. Sci.,

223:179–191, 1999. (4.1)

[183] K. Simon. A new simple linear algorithm to recognize interval graphs.

Lecture Notes Comput. Sci., 553:289–308, 1991. (*4.1) [184] P. J. Slater. R-domination in graphs. J. Assoc. Comput. Mach., 23:446–

450, 1976. (3.2)

[185] P. J. Slater. Domination and location in acyclic graphs. Networks, 17:55–

64, 1987. (3.3)

[186] R. Sosic and J. Gu. A polynomial time algorithm for the N -queens problem. SIGART Bull., 2(2):7–11, 1990.

[187] J. Spinrad. On comparability and permutation graphs. SIAM J.

Com-put., 14:658–670, 1985. (7, 8)

[188] A. Srinivasa Rao and C. Pandu Rangan. Linear algorithm for domatic number problem on interval graphs. Inform. Process. Lett., 33:29–33,

1989/90. (4.2)

[189] A. Srinivasan Rao and C. Pandu Rangan. Efficient algorithms for the minimum weighted dominating clique problem on permutation graphs.

Theoret. Comput. Sci., 91:1–21, 1991.

[190] J. A. Telle and A. Proskurowski. Efficient sets in partial k-trees. Discrete

Appl. Math., 44:109–117, 1993. (3.6)

[191] J. A. Telle and A. Proskurowski. Practical algorithms on partial k-trees with an application to domination-type problems. In F. Dehne, J. R. Sack, N. Santoro and S. Whitesides, editors, Lecture Notes in Comput. Sci., Proc. Third Workshop on Algorithms and Data Struc-tures (WADS’93), volume 703, pages 610–621, Montr´eal, 1993.

Springer-Verlag. (3.6)

[192] K. H. Tsai and W. L. Hsu. Fast algorithms for the dominating set problem on permutation graphs. Algorithmica, 9:109–117, 1993. (7) [193] C. Tsouros and M. Satratzemi. Tree search algorithms for the dominating

vertex set problem. Internat. J. Computer Math., 47:127–133, 1993.

[194] D. B. West. Introduction to Graph Theory, 2nd Edition. Prentice Hall,

2001. (3.1)

[195] K. White, M. Farber and W. Pulleyblank. Steiner trees, connected dom-ination and strongly chordal graphs. Networks, 15:109–124, 1985. (6.2) [196] T. V. Wimer. Linear algorithms for the dominating cycle problems in series-parallel graphs, partial k-trees and Halin graphs. Congr. Numer., 56:289–298, 1986.

[197] T. V. Wimer. An O(n) algorithm for domination in k-chordal graphs.

Manuscript, 1986.

[198] M. Yannakakis and F. Gavril. Edge dominating sets in graphs. SIAM J.

Appl. Math., 38(3):364–372, 1980. (3.2)

[199] H. G. Yeh. Distance-Hereditary Graphs: Combinatorial Structures and Algorithms. PhD thesis, Univ. Taiwan, 1997.

[200] H. G. Yeh and G. J. Chang. Algorithmic aspect of majority domination.

Taiwanese J. Math., 1:343–350, 1997.

[201] H. G. Yeh and G. J. Chang. Linear-time algorithms for bipartite distance-hereditary graphs. Submitted.

[202] H. G. Yeh and G. J. Chang. Weighted connected domination and Steiner trees in distance-hereditary graphs. Discrete Appl. Math., 87:245–253,

1998. (9.2)

[203] C. Yen and R. C. T. Lee. The weighted perfect domination problem.

Inform. Process. Lett., 35(6):295–299, 1990. (3.3, 5.2) [204] C. Yen and R. C. T. Lee. The weighted perfect domination problem and its variants. Discrete Appl. Math., 66:147–160, 1996. (3.6, 5.2)

相關文件