• 沒有找到結果。

正交分頻多工系統載波間干擾之降低及頻率偏移之估測

N/A
N/A
Protected

Academic year: 2021

Share "正交分頻多工系統載波間干擾之降低及頻率偏移之估測"

Copied!
45
0
0

加載中.... (立即查看全文)

全文

(1)

國立交通大學

電機與控制工程學系

碩士論文

正交多頻分工系統載波間干擾之降低及

頻率偏移之估測

Intercarrier Interference Reduction and Frequency

Offset Estimation for OFDM systems

研究生:周琪展

指導教授:鄭木火博士

(2)

5,¿

û˝Þ: ¶

Nû`¤: wƒÊ²=

Å >¦×çÚœD−„ ˙çÍ

¿b

£>}äÖ Í$ (orthogonal frequency-division multiplexing, OFDM) úf£«DQ Y«ËÓÂ5Èíä0.°F¨AíÝ°¥ÛïÝÜ> f$,s3bíj¶Vj²¤½æ, øuJä ÑHgVÁ/ä0Púc_Í$^?í à, Çø†uâf£mU…™í/<Ôy4 ”, ào*¯U (training symbol) CU‚‡0 (cyclic prefix), C$l4”V,¿Í$íä0 R, ª7‹J^k øj¶Êd.,sd¶, }ÑA™-šÈß×¾Îj¶ (self ICI cancellation) D¢¨j¶ (windowing) …dJbçVêcZ,Hsd¶, 1‹Jj„w TŸÜ£T|Ê¢¨qlj¶íZª _Ò!‹éýBbFT|5qlÊmUúÆm‹-šÈß ×5ªM (Signal-to-noise-plus-interference ratio, SNIR) ,ª® 3 dB íT¯ …d?‡ú ùj¶T|ø|×–N (maximum likelihood) 5ä0P,l Bb‡ú IEEE 802.11a ™Ä-ímU, ‚àwÔílû’e (preamble) 5Ô4, ªRû||×–N5,¿¶†V,lä 0R ¤Õ, Bb6Rû|¤ä0Rí Cr´amer-Rao -Ì Bb|(1J_Ò!‹Vð}¤j ¶íi4

(3)

Intercarrier Interference Reduction and Frequency

Offset Estimation for OFDM Systems

Student: Chichan-Chan Chou

Advisor: Dr. Mu-Huo Cheng

Institute of Electrical and Control Engineering

National Chiao-Tung University

Abstract

Orthogonal frequency-division multiplexing (OFDM) is very sensitive to frequency errors caused by frequency differences between transmitter and receiver local oscillators. There exists two approaches to deal with this problem. One is to mitigate the influence of frequency offset on the system performance at the expense of transmission bandwidth; the other is to employ some specific properties of the transmission signal, such as the training symbols, the cyclic prefix, or the statistical information to estimate and compensate for the frequency offset. The first approach consists of two methods, the self ICI cancellation and windowing. In this thesis, we formulate these two methods mathematically, explain their functions, and propose a design on windowing filter to improve the system performance. Simulations show that the improvement in SNIR (Signal-to-noise-plus-interference ratio) can be as high as 3 dB. For the second approach, we focus on the signal preamble of IEEE 802.11a standard and propose a maximum likelihood estimation algorithm to estimate the frequency offset. The Cr´amer-Rao bound of the frequency offset is also derived. Simulations are also performed to verify the effectiveness of the proposed algorithm.

(4)

¤d?ß‚êA, bԁöyË>áBíNû`¤wƒÊ`¤, Ê¥ssísû˝Þ®2, Ìu&AQÓíy^ö£CµçGíÃã-, ÌUBÊÞº£ç…,×ïGÖ Ĥʅd GF5Ò, úk:£f−¤“í4_,|y£íá< ʨt‚ÈwPŠÀé`¤ †ª`¤¸Š-‡`¤Æ˛N£1TXrÖ£í<c ʤ >á5bí: °v>áõðíFAº: ×pyÞçÅ ,,Ô ‰ïë Ø×å ˝ gg sàÊ{“,í~}n£Þº,í¡;®x, ÑÓÀ|íû˝ÞºÓ¼.ýH˘ |(b>áBí4,, 4y, _ä£é…, âkFbíG|¸.iË2¥, éB?Ì(è5R í*9û˝, ß‚êAç“, 1/?‰Þú-øší˚ØD‘D

(5)

ñ“

2d¿b i Ld¿b ii Ðá iii Çñ“ vi [ñ“ viii 1 é 1 1.1 £>}äÖ Í$ . . . 1 1.2 û˝ñíDd.è . . . 1 1.3 d-Z . . . 1 2 ¢¨úæÊä0R5£>}äÖ Í$í à 2 2.1 Uàj$¢íf$£>}äÖ Í$-Z . . . 2 2.1.1 ä0RDmUúÆm‹-šÈß×5ªM . . . 3 2.1.2 ¢¨D-šÈß×íÉ[ . . . 5 2.2 øí Rife D Vincent ¢¨ . . . 6 2.3 Kaiser¢¨ . . . 9 2.4 _Ò!‹ . . . 10 2.4.1 L=1 . . . 10 2.4.2 L=2 . . . 11 3 A™-šÈß×¾Îj¶ 15

(6)

3.2 ä0RDmUúÆm‹-šÈß×5ªM . . . 17

3.3 _Ò!‹ . . . 19

4 IEEE 802.11a -Z-íä0R,¿ 24 4.1 IEEE 802.11a lû’eí-Z . . . 24

4.2 |×–N¶ . . . 25 4.3 _Ò!‹ . . . 28 4.3.1 Ö½˜¦−_. . . 29 4.3.2 _Ò!‹ . . . 30 5 ! 32 A Ë“ 33 A.1 Cr´amer Rao -ÌíRû . . . 33

(7)

Çñ“

Ç 2.1 ‹p¢¨í£>}äÖ Í$-ZÇ. . . 2

Ç 2.2 ‹pj$¢¨í£>}äÖ Í$ý<Ç(Ìä0R). . . 6

Ç 2.3 ‹pj$¢¨í£>}äÖ Í$ý<Ç(ä0R). . . 7

Ç 2.4 .°¼bíøíRife D Vincent ¢¨×üä$. . . 7

Ç 2.5 Uàø¼íRife D Vincent ¢¨ÊL = 1-, QY«{rn}íä$. . . 8

Ç 2.6 Uà.°¼bíRife D Vincent ¢¨Í$5^?ý<Ç . . . 9

Ç 2.7 L = 1,∆ = 0.5£Ec/N0 = 10 ∼ 50dB 5-, ‚à Kaiser ¢¨l|íJ(β) . 10 Ç 2.8 L = 2,∆ = 0.5£Ec/N0 = 10 ∼ 50dB 5-, ‚à Kaiser ¢¨l|íJ(β) . 11 Ç 2.9 L = 2, Ec/N0 = 10dB 5-, Uàɼ, ø¼ Rife D Vincent ¢¨¸ Kaiser ¢¨í^? . . . 12

Ç 2.10 L = 2, Ec/N0 = 20dB 5-, Uàɼ, ø¼ Rife D Vincent ¢¨¸ Kaiser ¢¨í^? . . . 12

Ç 2.11 L = 2,Ec/N0= 30dB 5-, Uàɼ, ø¼ Rife D Vincent ¢¨¸ Kaiser ¢¨í^? . . . 13

Ç 2.12 L = 2,Ec/N0= 40dB 5-, Uàɼ, ø¼ Rife D Vincent ¢¨¸ Kaiser ¢¨í^? . . . 13

Ç 2.13 L = 2,Ec/N0= 50dB 5-, Uàɼ, ø¼ Rife D Vincent ¢¨¸ Kaiser ¢¨í^? . . . 14 Ç 3.1 A™-šÈß×¾Îj¶-ZÇ . . . 15 Ç 3.2 QYmUGlDGl+1 . . . 16 Ç 3.3 A™-šÈß×¾ÎDKaiser ¢¨j¶ÊEc/N0 = 10dB 5-í^? . . . . 19 Ç 3.4 A™-šÈß×¾ÎDKaiser ¢¨j¶ÊEc/N0 = 20dB 5-í^? . . . . 20 Ç 3.5 A™-šÈß×¾ÎDKaiser ¢¨j¶ÊEc/N0 = 30dB 5-í^? . . . . 20

(8)

Ç 3.7 A™-šÈß×¾ÎDKaiser ¢¨j¶ÊEc/N0 = 50dB 5-í^? . . . . 21

Ç 3.8 j$¢¨DKaiser ¢¨íä$ . . . 22

Ç 3.9 øKaiser ¢¨j¶DA™-šÈß×¾Îj¶!¯5J(β) . . . 23

Ç 4.1 IEEE 802.11a lû’eí-ZÇ . . . 24

Ç 4.2 ¯¯IEEE 802.11a ™Äí ML -ZÇ . . . 25

Ç 4.3 Rayleigh ¦−_50§à@ . . . 29

Ç 4.4 slû¯Uí_bÑùvíÌjÏÏDCr´amer Rao -Ì . . . 30

Ç 4.5 slû¯Uí_bÑüvíÌjÏÏDCr´amer Rao -Ì . . . 31

(9)

[ñ“

[ 2.1 ÌSNIR ªœÇ. . . 14 [ 3.1 ÌSNIR ªœÇ. . . 22

(10)

é

1.1

£>}äÖ Í$

£>}äÖ Í$uâ R. W. Chang [1] FT|Víøôä íbP¦mj¶ …‚à ˛¤½LO£>íä, ××ËTò7ä Uà^0 ÇÕ, £>}äÖ Í$2½bíU‚‡0 (cyclic prefix), .OªJú}-šÈß× carrier interference, ICI) ¸]UÈß× (inter-symbol interference, ISI), wU‚4µ`íÔ4 ´ªJTXÍ$®A°¥í T

1.2

û˝ñíDd.è

…¹d}Ñs׶}, }*s_i, ¾” ”, VTÜä0RF¨Aí½æ f$í £>}äÖ Í$ÊQY«Uàíuj$¢, Êä$,}|ÛPÙ'×/«ÁËÝMíis (side-lobes) ‡ú¤ø½æ, d. [2]2, Uà7¯¯ Nyquist Ä†í¢¨ ʤ¹d2, BbT|7 ‚à Kaiser ¢¨VHJ,¢¨ ¤Õ, [3], [4] 2T|7øxÍ, ŽâÊf£«äíÀ’e º0, ®ƒA™-šÈß×¾Îí^‹, Bb6ú¤º0j¶d7ø<Zª …dø}Jbçz p¥j¶í TŸÜ, 1‡úwiÿõ‹Jªœ

Ê IEEE 802.11a [5] í-Z2, Í$ãlº07ø¨lû’eVXQY«TmUW¿, ä0R ,¿, vÈ°¥£¦−,¿à [6] ‚à7Ê [7] í|×–N¶Vv|ä0P .¬âk [5]  [7] í-Z.`ó°, FJ [6] íj¶õÄÉ …¹d‡ú¤õ, ÌËRû|7ªk}‚ठ-Z’m|×–N¶, 1N¬¥_ä, v|yüíä0DvÈP

1.3

d-Z

…d-Zà-: ùıÜ¢¨ÑSªÁ/ä0RúÍ$F¨Aí à, /àbç‹J j„, 1ÿd.,í¢¨£BbFT|í Kaiser ¢¨ú6Vdªœ úıÜ [3] FT|íA™ -šÈß×¾Îj¶, Í(Dùıí¢¨j¶ªœ ûıÜ IEEE 802.11a í-Z, 1‚à [7] íh1, Rû|¯¯¤-Zí|×–N¶£w Cr´amer Rao -Ì üıÑc¹dí!

(11)

 2 ı

¢¨úæÊä0R5£>}äÖ Í$í à

Ê…ı³, Bbøú‹p¢¨í£>}äÖ Í$Tø_êcíÜ, «n¢¨ÑSªÁ/ä 0RúÍ$F¨Aí à, £wÊf£’eä ,FÛG|íHg QO}Üd.,¸Bb FT|í¢¨, |(øs6Tªœ

2.1

Uàj$¢íf$£>}äÖ Í$-Z

π ε π − − Ç 2.1: ‹p¢¨í£>}äÖ Í$-ZÇ Ç2.1Ñø£>}äÖ Í$ÊwQY«‹,¢¨íý<Ç, Q-VBbbRûc_Í$í bç£ùªø_¿¾^?í™Ä, mUúÆm‹-šÈß×5ªM (Signal-to-noise-plus-interference ratio, SNIR )

(12)

2.1.1 ä0RDmUúÆm‹-šÈß×5ªM

Êø_æÊä0R  í£>}äÖ Í$2, BbÊQY«íµb!ä (baseband) ^mU {rn}à-: rn = snej2π  Nn+ vn (2.1) sn = N/2−1X k=−N/2 (XkHk)ej2π n Nk (2.2) = N/2L−1X m=−N/2L (XmLHmL)ej2π n NmL, n = −N 2 , . . . , N 2 − 1 (2.3) w2LH[f£«mUíó¹È½, Ê…ıí(š¨}Ì`íÜ, ñ‡ªlqÑ1, HmLu

chan-nel Êä0mLvힲƒb, 1cqÊø_£>}äÖ ¯Uí‚Èî.Z‰, 7{vn}†u^

AWGN í¦š, 1cqÑóÖ íµbògÓœ‰b, vn∼ N (0, σv2), w2σv2 = (1/2)E[|vn|2] f$í£>}äÖ Í$uòQø{rn}£p N õíbPZ sž²j| (DFT demodulator) VêAj|‰í T Í7, ÊÇ 2.1 2íÍ$2, uÊbPZ sž²j|Â5‡ø¢¨ƒbå {wn}D {rn}ó  Ñ7jZ–c, BbIPN/2−1−N/2 wn = N  |(, ø{rnwn}£p N õíbPZ sž²j|Â2, BbªJQYƒ‹ž¬íå {Gl}, à-Fý: Gl = N/2−1X n=−N/2 rnwne−j2π l Nn, l = −N 2, . . . , N 2 − 1 (2.4)

QOBbø}zYƒíl°’eGl„Aú_¶}Vd}& ¥ú_¶}}ÑmU, -šÈß×

(intercarrier interference, ICI), £Æm 1ùª SNIR ¥_MVTÑ¿¾Í$^?í™Ä -ÞuwRû: Gl = N/2−1 X n=−N/2 rnwne−j2π l Nn (2.5) = N/2−1X n=−N/2     N/2L−1X m=−N/2L XmLHmLej2π n NmL   · ej2πNn+ v n   · wne−j2π l Nn (2.6) = N/2L−1X m=−N/2L XmLHmL N/2−1X n=−N/2 wnej2π mL+−l N n+ N/2−1X n=−N/2 wnvne−j2π l Nn (2.7) = N/2L−1X m=−N/2L XmLHmL· W1(l − mL − ) + Vl (2.8)

(13)

 2 ı ¢¨úæÊä0R5£>}äÖ Í$í à = XlHl· W1(−) + N/2L−1X m=−N/2L m6=l/L XmLHmL· W1(l − mL − ) + Vl (2.9) = Sl+ Il+ Vl (2.10) w2, W1(f ) = N/2−1 X n=−N/2 wne−j2π n Nf (2.11) Sl = XlHl· W1(−) (2.12) Il = N/2L−1 X m=−N/2L m6=l/L XmLHmL· W1(l − mL − ) (2.13) Vl = N/2−1X n=−N/2 wnvne−j2π l Nn (2.14) ÛÊBbb}·HmU (Sl), -šÈß× (Il), Æm (Vl) ¥ú_MÊ$l,í4” íl, Bb

cq]U {Xk} ¯¯ E[Xk] = 0 £ E[XiXj∗] = |X|2ij¥s_Ô4 6ÿuz, Êf£«äí

’euóÖ /ÌMÑÉ, Ì?¾Ñ |X|2 Τ5Õ, ̦−íÓï6\cqÑø_b, E[|Hk|2] = |H|2 ;WJ,ícq, BbZª)ƒJ-í!‹: E[|Sl|2] = E[|XlHlW1 · (−)|2] = |X|2|H|2|W1(−)|2 (2.15) E[|Il|2] = E    N/2L−1 X m=−N/2L m6=l/L XmLHmLW1(l − mL − ) · N/2L−1 X m=−N/2L m6=l/L XmL∗ HmL∗ W1∗(l − mL − )    = N/2L−1 X m=−N/2L m6=l/L |X|2|H|2|W 1(l − mL − )|2 (2.16) E[|Vl|2] = E   N/2−1 X n=−N/2 wnvne−j2π l Nn· N/2−1 X m=−N/2 wm∗vm∗ej2πNlm   (2.17) = N/2−1 X n=−N/2 |wn|2· E[|vn|2] · ej2π l−l Nn (2.18) = 2σv2 N/2−1X n=−N/2 wn2 = 2σ2v· W2(0) (2.19) w2

(14)

W2(f ) = N/2−1X n=−N/2

wn2e−j2πNnf (2.20)

wnÑõb, |wn|2 = w2n (2.21)

QO, ì2©_-š,íÌ?¾Ec = |X|2|H|2Ts, ĤEc/N0 = N |X|2|H|2/2σv2, w2 N0

ÑË‹ëÆmʦä¦−íÀiŠ0ä$ò,TsÑø_£>}äÖ Í$í¯UU‚ |(, Bb

I SNIRl H[QYƒl_]UGlíÌmUúÆm‹-šÈß×íªM, à-:

SN IRl = E[|Sl|2] E[|Vl|2] + E[|Il|2] , l = −N 2 , −N 2 + 2, . . . , N 2 − 2 (2.22) = |X| 2|H|2|W 1(−)|2 2σ2 v· W2(0) +PN/2L−1m=−N/2L m6=l/L |X|2|H|2|W 1(l − mL − )|2 (2.23) = Ec N0 · |W1(−)| 2 N · W2(0) + NEc0 ·PN/2L−1m=−N/2L m6=l/L |W1(l − mL − )|2 (2.24) B¤, Bb˛ì27SNIRl¥_¿¾Í$^?í™Ä, -Þø, ÿunBb;W (3.18) F _Ò|Ví!‹ 2.1.2 ¢¨D-šÈß×íÉ[ âkÊvó ^kÊäTì , Ç2.2 ·H7¤ø¬˙ Ç 2.2(a) Ñ {rn}íä$, ¤v L = 1, Ç 2.2(b) †uj$¢¨íä$, ĤçÍ$³ä0Rv, {rnwn} íä$¹ª[ý AÇ2.2(c) BbªJõƒ, ʤ8”-, Glÿ/ßk XlHl, 7wF-š,ímUXkHk,k6=l· ƒÉ, ¤vÿ.æÊ-šÈß× çf£«DQY«íËÓÂä0.°v, }ßÞøä0R, àÇ 2.3 Fý âÇ 2.3(c) ªJõ ƒ, ¤vBbQYƒí Gl, Î7XlHlú@ƒíPÙ‰ü5Õ, ´¨ÖwF-š,ímU} ,ø _ÝÉíM, ¥ÿuF‚í-šÈß× â (2.24) ªø, -šÈß×í×üDBbF²Ïí¢¨éò~íÉ[, Ç2.3(c) #7Bb ø_j²: JuBb?vƒø_is-±íÝ0í¢¨VHf$íj$¢, z.ìªJø-š Èí à±B|Q Ĥ-ÞbÜíÿu.°éí¢¨ú-šÈß×í à

(15)

 2 ı ¢¨úæÊä0R5£>}äÖ Í$í à ∗ = − + + + + =

Ç 2.2: ‹pj$¢¨í£>}äÖ Í$ý<Ç(Ìä0R)

2.2

øí Rife D Vincent ¢¨

âkf$íj$¢, Êä$,}'×/«ÁíÝMíis, ¥úk;ÁQ-šÈß×íb °óç.‚ Ĥ,[2]2T|7øí Rife D Vincent ¢¨VÄ@¥_½æ, ¤¢¨à-: wn = 1 + Z X b=1 A(b) cos(2π(n + N 2)b N ), n = −N 2 , . . . , N 2 − 1 (2.25) w2Z[ý¤¢¨í¼b, 7Ê (2.25) 2í¡bA(b)Ñ A(b) = 2(−1)b b Y i=1 Z + 1 − i Z + i (2.26)

Bb*×üíä$ªJyªø¥7jøí Rife D Vincent ¢¨íÔ4, àÇ2.4Fý: âÇ 2.4, BbªJÀUíõ|, 碨í¼bò, wisÿ«Áí0, Í7, ¥1.H [ZªJÌÌ„íÓ‹ Bb·<ƒ,ZM‰×Î7¨Ais‰ü5Õ, -ÓíuMÚÓ×í3s (main-lobe)  , 7¥ÿòQ àƒLMí²¦

*Ç 2.5(a) ªJõƒ, ÖÍZ = 1˛U)is‹§‰ü, Oâk³_粦L, Ĥ¨Aw F-š,ímU6ø–\Ê3s³Þ, ¤ví-šÈß×¥7}ªZ = 0vy× y6éíu, ÿ

(16)

− + + + + = ∗ = δ δ Ç 2.3: ‹pj$¢¨í£>}äÖ Í$ý<Ç(ä0R) δδδδ δ Ç 2.4: .°¼bíøíRife D Vincent ¢¨×üä$

(17)

 2 ı ¢¨úæÊä0R5£>}äÖ Í$í à ³ä0R, ,HíÕ”6}¨A'×í-šÈß×, àÇ2.5(b) Fý

Ê 2.1.1 2, Bb{%T¬,L H[Of£«mUíó¹È½, 6ÿuz, çL = 1v, B

Ç 2.5: Uàø¼íRife D Vincent ¢¨ÊL = 1-, QY«{rn}íä$

bªJf£í’ebÑN°, ªuçL = 2v, BbªJf£í’ebÉ”-N/2°7˛ Ĥ àSÊZDL5ÈT¦Ÿ, .â;WUà6íÛbVd²ì Ç 2.6 ý7Ê.°íZMDLM5-íSNIR BbªJõƒ, Ê£íÕ”-,L ìv, wSNIRí^?ÓZ‰×7‰ß, ¥uâk Bb^í±Q7isF¨Aí-šÈß×í×ü; ÇøjÞ, çZ ìv, œ×íLM})ƒœ ßíSNIR, ¥uÄÑBb 7f£ä íí] Τ5Õ, BbªJ·<ƒ, Êó°LíÕ” -, = 0Ë¡,Z = 0í^?}ªZ = 1ß, â (2.24) ªJ7j¥øõ; âk¤ví óç ¡É,(2.24) í}ä£}‚íùá·˛ó, Ĥ¥v`íSNIRÿâÂjíW2(0)F²ì,

.ÍíuW2(0)Z=1> W2(0)Z=0, Ä7}¨A,Hí!‹

M)øTíu, çZ = 0£Z = 1víøí Rife D Vincent ¢¨}ú@ƒj$¢¨£ O±í Hanning ¢¨

(18)

δ

Ç 2.6: Uà.°¼bíRife D Vincent ¢¨Í$5^?ý<Ç

2.3

Kaiser¢¨

%¬,Hín5(, Bb˛%7j, u´Sà/ø_¢¨, w3sí Disí×üu|3 bí5¾ ku, …¹d²Ï7 Kaiser ¢¨Vdþt, ŸÄuóœk׶}í¢¨, à Hanning ¢¨,Hamming ¢¨,blackman ¢¨ 좨ƒb,Kaiser ¢¨ªJÓOw¡bV|c3sí  £is×üÈí¦Ÿ J-u…íƒb: wn = ( I0[β(1−[(n−α)/α]2)1/2] I0(β) , 0 ≤ n ≤ M 0, otherwise (2.27)

w2α = M/2,I0(·)Ñøéíɼ Bessel ƒb BbªJõƒ,kaiser ¢¨\M ¸β¥s_¡b

F−„, w2¢¨ÅM˛\²ì, ×üuN − 1, FJ”-?Z‰íÉβ ÛÊí½æu, àS²ìø_|ßíβM? ѤBbì27ø_¿¾™Ä, V²ìv²¦5óš íβ, äà-: J(β) = Z ∆ −∆ SN IRl() d (2.28) b β = arg max β J(β) (2.29)

(19)

 2 ı ¢¨úæÊä0R5£>}äÖ Í$í à w2∆uBbF5?ä0Rí¸ˇ Ñ7°) bβ, |òQíd¶@vuø (2.27) p (2.28)  2, âkBbuú }, FJ (2.28) ÉF²¦í¢¨É, 7 Kaiser ¢¨¢uβíƒb, FJ QOúβTR}¦”M, ZªJ)ƒ bβ Í7, âklجµÆ, ̶%âA‰Rû|ø_Äü í$j; Ĥ, Ê…¹d2, Bb‚à MATLAB VBbêA¥á T, Q-Víøøý w }|Ví!‹

2.4

_Ò!‹

…øý‚à MATLAB Vl.°∆5-íJ(β), 1z¤v °)í bβDøí Rife D Vincent ¢¨£j$¢¨dªœ 2.4.1 L=1 ílBbÿ Kaiser ¢¨ÊL = 1íÕ”-, l¤ví bβ, Ç2.7 Ñw‡ú.°íEc/N0F } |Ví!‹ BbªJõƒ,J(β)í|×Mî|ÛÊβ = 0ív`, ¥[ý7Ê.¨‘ä í‘K-, j$¢¨u|ßí²Ï, ¤ví∆ = 0.5 0 1 2 3 4 5 6 7 8 9 10 −5 0 5 10 15 20 25 30 35 β

integral of SNIR0 of L = 1 case with Kaiser window, ∆ = 0.5

(20)

2.4.2 L=2 …üøbýÊL = 2, £.°Ec/N0Dä0R¸ˇíÕ”-, ‚à…ıFÜí¢¨F)ƒ í SNIR Ç2.8ÑL = 2£∆ = 0.55-‡ú.°íEc/N0F }|VíJ(β), ĤBbªJ)ƒÊ.°8 ”-íbβ Ç2.9∼Ç2.13ÑL = 2, ∆ = 0.55-,Ec/N0 = 10 ∼ 50dB, ‚à.°í¢¨F_ÒíSN IR^ ?!‹ 0 1 2 3 4 5 6 7 8 9 10 5 10 15 20 25 30 35 ∆ = 0.5 β J( β) dB 2.9 4.5 5.4 4.1 5.3 Ç 2.8: L = 2,∆ = 0.5£Ec/N0 = 10 ∼ 50dB 5-, ‚à Kaiser ¢¨l|íJ(β)

(21)

 2 ı ¢¨úæÊä0R5£>}äÖ Í$í à 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 3 4 5 6 7 8 9 10 Ec/N0 = 10dB, L = 2 δ SNIR m 0 (dB) Z = 0 Z = 1 Kaiser(β=2.9)

Ç 2.9: L = 2, Ec/N0 = 10dB 5-, Uàɼ, ø¼ Rife D Vincent ¢¨¸ Kaiser ¢¨í^

? 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 5 10 15 20 Ec/N0 = 20dB, L = 2 δ SNIR m 0 (dB) Z = 0 Z = 1 Kaiser(β=4.1)

Ç 2.10: L = 2, Ec/N0 = 20dB 5-, Uàɼ, ø¼ Rife D Vincent ¢¨¸ Kaiser ¢¨í^

(22)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 5 10 15 20 25 30 Ec/N0 = 30dB, L = 2 δ SNIR m 0 (dB) Z = 0 Z = 1 Kaiser(β=4.5)

Ç 2.11: L = 2,Ec/N0 = 30dB 5-, Uàɼ, ø¼ Rife D Vincent ¢¨¸ Kaiser ¢¨í^

? 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 5 10 15 20 25 30 35 40 Ec/N0 = 40dB, L = 2 δ SNIR m 0 (dB) Z = 0 Z = 1 Kaiser(β=5.3)

Ç 2.12: L = 2,Ec/N0 = 40dB 5-, Uàɼ, ø¼ Rife D Vincent ¢¨¸ Kaiser ¢¨í^

(23)

 2 ı ¢¨úæÊä0R5£>}äÖ Í$í à 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 5 10 15 20 25 30 35 40 45 50 Ec/N0 = 50dB, L = 2 δ SNIR m 0 (dB) Z = 0 Z = 1 Kaiser(β=5.4)

Ç 2.13: L = 2,Ec/N0 = 50dB 5-, Uàɼ, ø¼ Rife D Vincent ¢¨¸ Kaiser ¢¨í^

?

âk Kaiser ¢¨1.Å— Nyquist Ć, ¥[ýÿä0R = 0, EÍ}-šÈß× íæÊ ĤÿSNIRÊ = 0Ë¡í^?,Rife D Vincent ¢¨}ª Kaiser ¢¨ß Í7, [2.1 ªœ7.°¢¨5-íÌ^?[Û, BbªJõƒ, Ê׶}í8”5-, ´u Kaiser ¢¨œß [ 2.1: ÌSNIR ªœÇ 10dB 20dB 30dB 40dB 50dB Kaiser 8.4921 17.9842 26.0120 31.3381 34.3520 Z = 1 7.5921 16.5446 23.8306 29.9927 35.8752 Z = 0 7.7366 14.6887 20.4841 26.3648 33.6539 zp: [³íÀPÑdB

(24)

A™-šÈß×¾Îj¶

Ê…ı³, Bbb܎âf£«mUº0íj¶VÁ/ä0RF¨Aí à, 16þtR û|ø_éNíSNIRä, |(yøwD¢¨íj¶Tø_ªœ ε π − − π Ç 3.1: A™-šÈß×¾Îj¶-ZÇ

3.1

d.Ü£ TŸÜ

[3]ê7øPú}ä0Ríj¶, ±ÑA™-šÈß×¾Î Ç 3.1 Ñw-Z ¥_j¶íx ÍÊkUàs_ó¹í-šf£°ø_mU, |(ÊQY«QYv, âkÊ¥s_-š,»-í…V ÿuó°ímU, Ĥøwó‹ÎJùÿuBbbímU, ¥šd.cªJYƒ£üímU, ´ªJ

(25)

 3 ı A™-šÈß×¾Îj¶ ¾Î¥s_ÌÉíÆm

Ç 3.2 2, õ(uBbFbímU, ™(†u-šÈß× BbªJÀUíõƒ, âkBbd7 ó¹í¦−ó¥_cq, FJʝ|«ó¹s_-šímUuó°í, ø,-s_Mó‹(, ˘k mUí¶}uq4ß−, ˘k-šÈß×í¶}îuú;4ß−, ¥ÿu¤j¶±åíâV - øRû|êcíbçVð„¥_j¶í TŸÜ = + + = + + + + Ç 3.2: QYmUGlDGl+1

(26)

3.2

ä0RDmUúÆm‹-šÈß×5ªM

Ê…2, Bbø}Rûà2.2.1íbç, 1°š6ì2|ø_SNIRVTÑ¿¾Í$^? í™Ä ílBbIó¹íf£mUÑó°, QOcqó¹í¦−6uóí, ªJ)ƒ, Xl = Xl+1 (3.1) Hl = Hl+1, l = − N 2, − N 2 + 2, . . . , N 2 − 2 (3.2)

QO, ;W (2.8) , øLH1, BbQYƒíl£l + 1_mU, ªJ[ýA-Þíä, Gl = N/2−1 X k=−N/2 XkHk· W1(l − k − ) + Vl (3.3) Gl+1 = N/2−1X k=−N/2 XkHk· W1(l + 1 − k − ) + Vl+1 (3.4) w2Vl¸W1(f )î°,øıFì2 QO, BbøGl£Gl+1ó‹ÎJù, ÿuBbö£bímU, ¦

±ÑAl °ší,Al6ª\[ýÑú_áí¸, }ÑmU¶}, -šÈß׶}, £Æm¶M, à-,

Al = 1 2(Gl+ Gl+1) (3.5) = 1 2 N/2−1X k=−N/2 XkHk· (W1(l − k − ) + W1(l + 1 − k − )) + 1 2(Vl+ Vl+1) (3.6) = 1 2{XlHl· [W1(−) + W1(1 − )] + Xl+1Hl+1· [W1(−1 − ) + W1(−)]} + 1 2 N/2−1X k=−N/2 k6=l,l+1 XkHk· (W1(l − k − ) + W1(l + 1 − k − )) + 1 2(Vl+ Vl+1) (3.7) = 1 2{XlHl· [W1(1 − ) + 2W1(−) + W1(−1 − )]} + 1 2        N/4−1 X k=−N/4 k6= l2 XkHk· [W1(l − 2k + 1 − ) + 2W1(l − 2k − ) + W1(l − 2k − 1 − )]        + 1 2(Vl+ Vl+1) (3.8) = SlA+ IlA+ VlA (3.9) ÛÊBbb}·HmU (Sl), -šÈß× (Il), Æm (Vl) ¥ú_MÊ$l,í4” íl,

(27)

 3 ı A™-šÈß×¾Îj¶ ¥Z sž²|‰Âí5‡í’euóÖ /ÌMÑÉ, Ì?¾Ñ |X|2 Τ5Õ, ̦ −íÓï6\cqÑø_b, E[|Hk|2] = |H|2 ;WJ,ícq, BbZª)ƒ5-í!‹: E[|SA l |2] = 1 4 · |X| 2|H|2· |W 1(1 − ) + 2W1(−) + W1(−1 − )|2 (3.10) E[|IA l |2] = 1 4 · N/4−1X k=−N/4 k6= l2 |X|2|H|2· |W 1(l − 2k + 1 − ) + 2W1(l − 2k − ) + W1(l − 2k − 1 − )|2 = 1 4 · |X| 2|H|2· W (l, k, ) (3.11) E[|VlA|2] = 1 4 · E[(V A l + Vl+1A )(VlA∗+ Vl+1A∗)] (3.12) = 1 4(E[V A

l VlA∗] + E[Vl+1A Vl+1A∗] + E[Vl+1A VlA∗] + E[VlAVl+1A∗]) (3.13)

= 1 4(2σ 2 vW2(0) + 2σ2vW2(0) + 2σv2W2(1) + 2σv2W2(−1)) (3.14) = 1 4(2σ 2 v · (2W2(0) + 2Re{W2(1)}) (3.15)

QO, ì2©_-š,íÌ?¾Ec = |X|2|H|2Ts, ĤEc/N0 = N |X|2|H|2/2σv2, w2

N0ÑË‹ëÆmʦä¦−íÀiŠ0ä$ò,TsÑø_£>}äÖ Í$í¯UU‚ |(, B bI SNIRA l H[QYƒl_]UAlíÌmUúÆm‹ß×íªM, à-: SN IRlA = E[|S A l |2] E[|VA l |2] + E[|IlA|2] , l = −N 2 , −N 2 + 2, . . . , −N 2 − 2 (3.16) = |X| 2|H|2|W 1(1 − ) + 2W1(−) + W1(−1 − )|2 2σ2 v · (2W2(0) + 2Re{W2(1)}) +PN/4−1k=−N/4 k6= l2 |X|2|H|2· W (l, k, ) (3.17) = Ec N0 · |W1(1 − ) + 2W1(−) + W1(−1 − )| 2 2N · (W2(0) + Re{W2(1)}) + ENc0 ·PN/4−1k=−N/4 k6= l2 W (l, k, ) (3.18) B¤, Bb˛ì27SNIRA l ¥_¿¾Í$^?í™Ä, -Þø, ÿuBb;W (3.18) í _Ò!‹5n

(28)

3.3

_Ò!‹

…ø‚à (2.24) D (3.18) í_Ò!‹VªœA™-šÈß׾Σ Kaiser ¢¨í^ ? ÊBbÇá_Ò5‡, sõ.â5?, ø, uf£ä í×ü âkñ‡íA™-šÈß× ¾Îj¶, BbIXl = Xl+1, Ĥwf£ä Éf$£>}äÖ Í$íøš, FJÊ¢¨íj ¶2, Bb.âqìL = 2 ù, us6ífŠ0.âó JøA™-šÈß×¾ÎífŠ 0ìÑE, µóL = 2í Kaiser ¢¨, wA™-šÈß×¾ÎZÉE/2 à¤øV,Hsj¶ n?\tíªœ Ç 3.3 ƒÇ 3.7 }_Ò7L = 2, ∆ = 0.5, Ec/N0 = 10 ∼ 50dB 5-íSN IRúä0R 퉓 *¥<_ÒÇ2, ªœÔíuÇ 3.3, BbªJõƒÆmœ×í=1-, A™-šÈß ×j¶í^?pé˪ Kaiser ¢¨j¶ß,rÖ, ¥uâkëÆmÊä$,íFä0·ó° í?¾, Í7 Kaiser ¢ä$í3s ªj$¢í´b×, ĤÊó°íëÆm?¾5-,Kaiser ¢3sFƒí–ªœÖ, Ĥ^?ÿóúÁQ7, Ç 3.8 ªJÀUízp¤õ óœkf$í£ >}äÖ Í$, A™-šÈß×¾ÎD¢¨¤sj¶íü·ªJÁ/Í$ä0RF¨Aí-šÈß×, Í7, ʤ°vº6· ¥f£mUíä  Ĥ, àSÊ^?Df£ä 5ÈT¦Ÿ, .â;WUà6íÛbVd²ì 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 6.5 7 7.5 8 8.5 9 9.5 10 δ SNIR m 0 (dB) 10dB Kaiser window self ICI cancellation

(29)

 3 ı A™-šÈß×¾Îj¶ 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 10 11 12 13 14 15 16 17 18 19 20 20dB δ SNIR 0 (dB) Kaiser window self ICI cancellation

Ç 3.4: A™-šÈß×¾ÎDKaiser ¢¨j¶ÊEc/N0 = 20dB 5-í^? 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 10 12 14 16 18 20 22 24 26 28 30 δ SNIR m 0 (dB) 30dB Kaiser window self ICI cancellation

(30)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 10 15 20 25 30 35 40 40dB δ SNIR 0 (dB) Kaiser window self ICI cancellation

Ç 3.6: A™-šÈß×¾ÎDKaiser ¢¨j¶ÊEc/N0 = 40dB 5-í^? 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 10 15 20 25 30 35 40 45 50 δ SNIR m 0 (dB) 50dB Kaiser window self ICI cancellation

(31)

 3 ı A™-šÈß×¾Îj¶ −6 −4 −2 0 2 4 6 −90 −80 −70 −60 −50 −40 −30 −20 −10 0 δ |W1 (δ )| (dB)

Kaiser window Rectangular window

Ç 3.8: j$¢¨DKaiser ¢¨íä$ [ 3.1: ÌSNIR ªœÇ 10dB 20dB 30dB 40dB 50dB Kaiser¢¨ 8.4921 17.9842 26.0120 31.3381 34.3520 A™-šÈ¾Î 9.0394 17.2054 23.8477 29.7731 35.8319 zp: [³íÀPÑdB [ 3.1ªœ7A™-šÈß×j¶D Kaiser ¢¨j¶íÌ^?[Û, BbªJõƒ, Ê ä0Rœüv, A™-šÈß×j¶í^?ª Kaiser ¢¨j¶bß, ¥uâk Kaiser ¢¨1. ¯¯ Nyquist Ćíí]; ¥5, çä0Rœ×v, âk Kaiser ¢¨íis«ÁËœ0, Ĥw ^?ªA™-šÈß×¾Îj¶bß

ÇÕ, Ç3.9uBbþtOø Kaiser ¢¨j¶A™-šÈß×¾Îj¶Ê∆ = 0.55-!¯ í_Ò!‹, ªJõƒ, Ê.°íEc/N0-, îuβ = 0(j$ window) Ñ|ß, ĤBb7jƒ¤

(32)

0 1 2 3 4 5 6 7 8 9 10 0 5 10 15 20 25 30 35 β

integral of SNIR0 of self cancellation with Kaiser window, ∆ = 0.5

(33)

 4 ı

IEEE 802.11a

-Z-íä0R,¿

Ê…ı³, Bb* [7]í|×–N¶|ê, Rû|ö£_¯ IEEE 802.11a _slû’e (short preamble) Uàí|×–N¶£w Cr´amer Rao -Ì, |(yN¬.°í¦−Vd_Ò

4.1

IEEE 802.11a

lû’eí-Z

µ

=

+

µ

=

×

×

+

×

=

µ

Ç 4.1: IEEE 802.11a lû’eí-ZÇ

Ç4.1Ñ IEEE 802.11a lû’eí-Z, …â10_êró°ís¯U (SS) £2_êr ó°íůU (LS) F A, wÅ}Ñ 16 £ 64 _‚š (sample), Τ5Õ,GI uůUíè ¨È½ (Guard Interval), …uůUí|(32°’eíµ` Ê¥‚È, QY«.âêAmU ¿, ä0R,¿, vÈ°¥, D¦−,¿ …ı¹uÜʤ-Z-íä0R,¿

(34)

4.2

|×–N¶

[7]FT|í|×–N¶, u‚às¨½µímU5ÈíóÉ4Vv|ä0R£vÈR Í 7,IEEE 802.11a ílû’eº.És_, Ĥ, BbwÑ* IEEE 802.11a í-Z, ªJ¾¦| yÖÉä0£vÈRí’m

Ç4.2uBb‚à IEEE 802.11a ™Äí_slû¯UVRû|×–N¶í-ZÇ, w2Ls[ ý½µs¯UíÅ,NsH[½µs¯Uí_b,LuBbFh¿í¸ˇ, 7θuvÈRíP0 B bì2¦šÕ¯

θ

Ç 4.2: ¯¯IEEE 802.11a ™Äí ML -ZÇ Ip ≡ {θ + pL s, . . . , θ + (p + 1)Ls− 1}, p = 0, 1, . . . , N s − 1 (4.1)

w2©_ÊIp³íMîu½µí’e QO, BbøQYƒímUì2ÑøL×1í²¾r = [r(1) · · · r(L)]T

BbªJ·<ƒ, Êr2, rÊU‚‡0Dwµ`í¦šõr(k),k ∈ SN s−1p=0 Ip uóÉ4í, 6ÿ uz, ∀k ∈ I0, E[r(k + nLs)r∗(k + mLs)] =    σ2 s + σn2, m = n σ2 se−j2π  N(m−n)Ls, (m − n) = 1 . . . N s − 1 0, otherwise w2Ñä0R

θ¸íúb-ª?4 (log-likelihood) ƒbΛ(θ, ), uúf (r|θ, )¦úb(í!‹, 7f (r|θ, )u BbFh¿ƒírÊ#ìθ¸5-íœ0òƒb âkFó‹ÁC£bó íb, î.} à BbøΛ(θ, )|ד5(F)ƒí!‹, ĤÊQ-VíbçRû2, Bb}ø¤ébêrI ¥ ‚àrFxíóÉ4,Λ(θ, )ªJ\[ýÑJ-íä, Λ(θ, ) = log f (r|θ, ) = log      Y k∈I0 f (r(k), r(k + Ls), . . . , r(k + (N s − 1)Ls)) · Y k /∈SN s−1p=0 Ip f (r(k))     

(35)

 4 ı IEEE 802.11a -Z-íä0R,¿ = log ( Y k∈I0 f (r(k), r(k + Ls), . . . , r(k + (N s − 1)Ls)) f (r(k))f (r(k + Ls)) · · · f (r(k + (N s − 1)Ls))) Y k f (r(k)) ) (4.2) (4.3) Ê (4.3) 2,Qkf (r(k))Dθ£ÌÉ, FJBbªJø…I QO, BbªJõƒ,(4.3) 2í }‚uNs_ø&íµbòg}0íœ0òƒbó , w!‹à-, f (r(k)) = exp(− |r(k)|2 σ2 s+σn2) π(σ2 s+ σn2) (4.4) N s−1Y l=0 f (r(k + lLS)) =  1 π(σ2 s+ σ2n) N s · exp − PN s−1 l=0 |r(k + lLs)2| σ2 s + σn2 ! (4.5) (4.6) Q-VuªœµÆí}ä¶}, âk}äÑNs&íµbòg}0, wu°íœ0òƒbÑ,

f (z) = 1 π det(R)exp(−z HR−1z) (4.7) w2 z=      r(k) r(k + Ls) .. . r(k + (N s − 1)Ls)      (4.8) R = E[zzH] (4.9) = E[      r(k) r(k + Ls) ... r(k + (N s − 1)Ls)     ·  r∗(k) r(k + Ls) · · · r(k + (N s − 1)Ls) ] =      σ2 s + σn2 σs2e−j2π  NLs σ2 se−2j2π  NLs · · · σ2 se−j(N s−1)2π  NLs σ2 sej2π  NLs σ2 s+ σn2 ... . .. σ2 sej(N s−1)2π  NLs σ2 s+ σn2      (4.10) = σ2nI + σ2sxxH, w2 x =      1 ej2πNLs ... ej(N s−1)2πNLs      (4.11)

(36)

âkR/ßOÔyí!Z, ĤBbªJ‚à¥ä³ìÜ (matrix inversion lemma) Vl |R−1£det(R), R−1 = 1 σ2 n I − 1 σ2 n Ix( 1 σ2 s I + xH 1 σ2 n Ix)−1xH 1 σ2 n I (4.12) = 1 σ2 n I − σ 2 s σ2 n(σn2 + Nsσ2s) xxH (4.13) det(R) = (σ2n)Ns−12 n+ Nsσ2s) (4.14) Ĥ, f (r(k), r(k + Ls), . . . , r(k + (N s − 1)Ls)) f (r(k))f (r(k + Ls)) · · · f (r(k + (N s − 1)Ls))) (4.15) = exp−zH( 1 σ2 nI − σ2 s σ2 n(σ2n+Nsσ2s)xx H)zN s2 n)Ns−1(σn2 + Nsσs2) exp−PN s−1l=0 |r(k+lLs)2| σ2 s+σ2n  /πN s2 n+ σ2s)N s (4.16) = (σ 2 n+ σs2)Ns (σ2 n)Ns−1(σ2n+ Nsσ2s) · exp − 1 σ2 n zHz+ σ 2 s σ2 n(σ2n+ Nsσs2) zHxxHz+ PN s−1 l=0 |r(k + lLs)2| σ2 s + σn2 ! = (σ 2 n+ σs2)Ns (σ2 n)Ns−1(σ2n+ Nsσ2s) · exp  − 1 σ2 n zHz+ σ 2 s σ2 n(σn2 + Nsσs2) (zHz+ Q) + z Hz σ2 s + σ2n  = c1· exp(c2· Q − c3· zHz) (4.17) w2 N s−1X l=0 |r(k + lLs)|2 = zHz (4.18) zHxxHz = N s−1X l=0 |r(k + lLs)|2+ NXs−2 α=0 NXs−1 β=α+1 2Re{r(k + αLs)r∗(k + βLs)ej(β−α)2π  NLs} = zHz+ Q (4.19) c1 = (σ2 n+ σs2)Ns (σ2 n)Ns−1(σ2n+ Nsσs2) (4.20) c2 = σ2 s σ2 n(σn2+ Nsσ2s) (4.21) c3 = −σ2 s(σn2 + σs2) − σ2n(σn2+ Nsσ2s) + (σ2n+ Nsσs2)(σn2+ σs2) σ2 n(σn2 + Nsσs2)(σn2 + σs2) (4.22) = (N s − 1)σ 4 s σ2 n(σn2+ Nsσ2s)(σn2 + σs2) (4.23)

(37)

 4 ı IEEE 802.11a -Z-íä0R,¿ B¤, úbª?4ƒbª\“A-: Λ(θ, ) = log f (r|θ, ) (4.24) = log ( Y k∈I0 c1· exp(c2· Q − c3 · zHz) ) (4.25) = θ+LXs+1 k=θ {log c1+ c2· Q − c3· zHz} (4.26) âkc1Ñø×kÉíb, ÊBb|דíTÜ2ª\I, ‹,c2,c3ó°íĪø–\¾¥, Ĥ, Žâ|ד“(í (4.23) , BbªJ)ƒbθM LDbM L, à-, b θM L, bM L = arg max θ,  θ+LXs−1 k=θ (c2· Q − c3· zHz) (4.27) = arg max θ,  θ+LXs−1 k=θ (Q − ρ(Ns− 1)zHz) (4.28) = arg max θ,  { θ+LXs−1 k=θ NXs−2 α=0 NXs−1 β=α+1 2Re{r(k + αLs)r∗(k + βLs)ej(β−α)2π  NLs} −ρ(Ns− 1) θ+LXs−1 k=θ zHz} (4.29) w2 ρ = σ 2 s σ2 s + σn2 (4.30) ƒ¤, ø¯¯ IEEE 802.11a ™Äí|×–Nƒb˛Rû!!, -ÞøZuBbN¬ (4.26) Fdí_Ò, 1DÜ,í Cr´amer Rao -ÌTø_ªœ ÇÕ, BbªJ·<ƒJøNs = 2p (4.26), Zª)ƒD [7]êró°í!‹, ¥6ÈQ„p7BbRûí£ü4

4.3

_Ò!‹

…øý.°lû’eÅÊË‹ëÆm¦−£ Rayleigh fading ¦−5-, ,¿|íä0 P5ÌjÏÏ (mean-squared error) DÜ,í Cr´amer Rao -Ìdªœ

(38)

4.3.1 Ö½˜¦−_

âkÊÛõíÌ(¦m=12}æÊrÖ¾óÓV®°mUf£í˜, FJÊ׶}í8” -, Î7mòª (light of sight) ˜(5Õ, ´rÖ¨AmU~¦í˜ Ĥ, ø_ªX.°í Ì(¦mÍ$óªœ/?ø_4 (consistent) !‹í¦−_u.âí Ñ7¤øñí,IEEE 802.11 TÈÑSà7-Hí¦−_Vã¿ IEEE 802.11a(5GHz) íÖ½˜WÑ, Ç4.3Ѥ ¦−_í0§à@, w2©ø_vÈõ,, ·u×üÑ Rayleigh }Ó, iÑÌG}ÓíµbM, /wÌ?¾ÓOvÈíÓ‹ONb˙í«Á -Þuwbç_: hk = N  0,1 2σ 2 k  + jN  0,1 2σ 2 k  (4.31) σk2 = σ02e−kTS/TRM S (4.32) σ02 = 1 − e−TS/TRM S (4.33) w2N 0,1 2σ 2 k  uÌÑÉ, ‰æÑ1 2σ 2 kíògÓœ‰b, 7σ02 = 1 − e−TS/TRM SuÑ7Å—Ì Š0Ñø (Pkmax k=0 = 1) íd¸

âk IEEE 802.11a Ê!äí¦š§0Ñ 20MHz, ;W [7]íqñ, BbF_Ò Rayleigh fading ¦−_í¡bTRM S = 100ns(óçk 2 _¦š), D|×íôb¸ˇKmax(delay spread)

Ñ0.75µs(óçk15_¦š) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.8 Rayleigh fading channel impulse response

k

Magnitude

(39)

 4 ı IEEE 802.11a -Z-íä0R,¿ 4.3.2 _Ò!‹

Ç 4.4, Ç4.5, £Ç4.6}Ñslû¯Uí_bÑù, ü, v, %¬Ë‹ëÆm¦−£ Rayleigh fading ¦−íÌjÏÏDÜ,í-Ì5ªœ

*-Þú_ÇBbªJõƒ, çBbFUàíslû¯Uí_bÖ, wÌjÏÏD Cr´amer Rao -Ì6ÿü, ¥uâkBbªàí’mÖíí] 0 1 2 3 4 5 10−3 10−2 10−1 Ns = 2 SNR MSE & CRB CRB

Rayleigh fading channel AWGN channel

(40)

0 1 2 3 4 5 10−4 10−3 10−2 Ns = 5 SNR MSE & CRB CRB

Rayleigh fading channel AWGN channel Ç 4.5: slû¯Uí_bÑüvíÌjÏÏDCr´amer Rao -Ì 0 1 2 3 4 5 10−5 10−4 10−3 Ns = 10 SNR MSE & CRB CRB

Rayleigh fading channel AWGN channel

(41)

 5 ı

!

ñ‡j²ä0Rú£>}äÖ Í$F¨AíÝ°¥ à3bùj¶ ÊJä ÑHg VÁ/ä0Púc_Í$^?íj¶,, BbSà Kaiser ¢¨VqlFÛí˙šÂ, %_Òð„ ¤qlíüÊ^?,?FT¯ …d6ÜA™-šÈß×¾Îíj¶, 1D¢¨j¶Vdª œ, êÛâk‡øj¶FÛfŠ0¬×, A™-šÈß×j¶í^?ÉÊmUÆmª (SNR) ü v}œ74?, .Í׶}í8”-I\¢¨j¶ø¿ Êâf£mU…™í/<Ôy4”,lä 0R,, …d‡úÊ IEEE 802.11a ™Ä-5lûmU-5Ô4, Rû||×–N5,lj¶ 1°|£wÜ,í Cr´amer-Rao -Ì. %_Ò!‹BbêÛÖͤj¶l¬˙µÆOwÄü4 'ò

(42)

Ë“

A.1

Cr´

amer Rao

-ÌíRû

f (r|θ, ) = Y k∈I0 C1exp(C2Q − C3zHz) (A.1) ln f (r|θ, ) = θ+LXs−1 k=θ (ln C1+ C2Q − C3zHz) (A.2) ∂2 ∂2 ln f (r|θ, ) = C2 θ+LXs−1 k=θ ∂2Q ∂2 (A.3) w2 Q = NXs−2 α=0 NXs−1 β=α+1 2Re{r(k + αLs)r∗(k + βLs)ej(β−α)j2π (β−α)Ls N } (A.4) ∂2Q ∂2 = −2( 2πLs N ) 2 NXs−2 α=0 NXs−1 β=α+1 2Re{r(k + αLs)r∗(k + βLs)(β − α)2ej2π (β−α)Ls N }

FJ,Cr´amer Rao Bound Ñ

V ar [b(r) − ] (A.5) ≥  −E[∂ 2ln f (r|θ, ) ∂2 ] −1 (A.6) = ( 2 · C2· ( 2πLs N ) 2 θ+LXs−1 k=θ NXs−2 α=0 NXs−1 β=α+1 (β − α)2Re{E[r(k + αLs)r∗(k + βLs)]ej2π (β−α)Ls N  )−1 = ( 2 · C2· ( 2πLs N ) 2 θ+LXs−1 k=θ NXs−2 α=0 NXs−1 β=α+1 (β − α)2Re{σs2e−j2π(β−α)LsN ej2π (β−α)Ls N  )−1 (A.7) = ( 2 · σ 2 s σ2 n(σ2n+ Nsσs2) · (2πLs N ) 2· σ2 s θ+LXs−1 k=θ NXs−2 α=0 NXs−1 β=α+1 (β − α)2 )−1 (A.8)

(43)

 A ı Ë“ = ( 2 · σ 2 s σ2 n(σ2n+ Nsσs2) · (2πLs N ) 2· σ2 s · Ls· NXs−1 t=1 (Ns− t)t2 )−1 (A.9) = N 2σ2 n(σ2n+ Nsσs2) 8π2L3 sσ4s PNs−1 t=1 (Ns− t)t2 (A.10)

(44)

[1] R. W. Chang, “Synthesis of band-limited orthogonal signals for multi-channel data transmission,” Bell Syst. Tech. J., vol. 45, pp. 1775-1796, Dec. 1966.

[2] R. Zhamg, T. T. Tjhing, H. J. Hu, and P. He, “Window function and interpolation algorithm for OFDM frequency-offset correlation,” IEEE Trans.Commun., vol. 52, NO. 3, pp. 654-670, May. 2003.

[3] J. Armstrong, “Analysis of new and existing methods of reducing intercarrier inter-ference due to carrier frequency offset in OFDM,” IEEE Trans.Commun., Vol. 47 , No. 3 , pp. 365-369, Mar. 1999.

[4] Y. Zhao and S.-G. Haggman, “Sensitivity to Doppler shift and carrier frequency errors in OFDM systems-the consequences and solutions,” IEEE 46th Conf. Vehicular Technology, pp. 1564-1568, vol. 3, May 1996.

[5] IEEE Std 802.11a: “Wireless LAN medium access control(MSC) and physical layer(PHY) specifications: high-speed physical layer in the 5 GHz band,” Dec. 1999. [6] S. Chang and E. J. Powers, “Efficient frequency-offset estimation in OFDM-based

WLAN systems,” Electronics Letters, Vol. 39 ,No. 21, pp. 1554-1555, Oct. 2003. [7] J.-J. van de Beek, M. Sandell, and P. O. Borjesson, “ML estimation of time and

frequency offset in OFDM systems,” IEEE Trans. on Signal Processing, Vol. 45, No. 7, pp. 1800-1805, Jul. 1997.

[8] M. Gudmundson and P.-O. Anderson, “Adjacent channel interference in an OFDM system,” IEEE 46th Vehicular Technology Conf., Atlanta, GA, APR. 1996, pp. 918-922

[9] T. Pollet, M. Van Bladel, and M. Moeneclaey, “BER sensitivity of OFDM systems to carrier frequency offset and Wiener phase noise,” IEEE Trans. Commun., vol.43, pp. 191-193, Feb./Mar./Apr. 1995.

(45)

5d. [10] J. Li, G. Liu,and G. B. Giannakis, “Carrier frequency offset estimation for

OFDM-based WLANs,” IEEE SIGNAL Processing Lett., vol. 8, NO. 3, Mar. 2001.

[11] J.-J. van de Beek, M. Sandell, M. Isaksson,and P. O. Borjesson, “Low-complex frame synchronization in OFDM systems,” IEEE Universal Personal Commun. 4th Conf., 6-10, pp 982-986, Nov. 1995.

[12] C. Muschallik, “Improving an OFDM reception using an adaptive Nyquist window-ing,” IEEE Transactions on, Consumer Electronics, Vol. 42 , pp. 259-269, Aug. 1996.

參考文獻

相關文件

定義為∣G(jω)∣降至零頻率增益(直流增益)值之 0.707 倍 時之頻率或-3dB 時頻率。.

Based on [BL], by checking the strong pseudoconvexity and the transmission conditions in a neighborhood of a fixed point at the interface, we can derive a Car- leman estimate for

Students are asked to collect information (including materials from books, pamphlet from Environmental Protection Department...etc.) of the possible effects of pollution on our

Numerical results are reported for some convex second-order cone programs (SOCPs) by solving the unconstrained minimization reformulation of the KKT optimality conditions,

For the proposed algorithm, we establish a global convergence estimate in terms of the objective value, and moreover present a dual application to the standard SCLP, which leads to

We propose a primal-dual continuation approach for the capacitated multi- facility Weber problem (CMFWP) based on its nonlinear second-order cone program (SOCP) reformulation.. The

Abstract We investigate some properties related to the generalized Newton method for the Fischer-Burmeister (FB) function over second-order cones, which allows us to reformulate

Like the proximal point algorithm using D-function [5, 8], we under some mild assumptions es- tablish the global convergence of the algorithm expressed in terms of function values,