• 沒有找到結果。

重心法、邊路徑法與新邊路徑位序法在三階正規階層結構圖上之比較分析

N/A
N/A
Protected

Academic year: 2021

Share "重心法、邊路徑法與新邊路徑位序法在三階正規階層結構圖上之比較分析"

Copied!
95
0
0

加載中.... (立即查看全文)

全文

(1)

Å C2`>×çbç`>çÍ

î=d

Nû`¤

:

Ù−p

²=

-î•

²=

½-¶ i˜¶Dhi˜På¶Êú¼

£

d¼µ!ZÇ,5ªœ}&

û˝Þ

:

Š

6Ì ª

2

M ¬ Å

 ÿ  ý ~

(2)

¿b

¡V‚à–1ÇCuç3¼µÇV«nç©–1ç35A^

,

˛éOí^ï

n…ç6˙t¨{k

1981

T|½-¶

,

.OT

¯7}&xX

,

6Ó‹7¼µ!Z

Çíõà4Dªè4 Åqç6>\6k

2007

T|7ZG½-¶5}&¥

,

ò

s7ʽ-Mó°vFb«nívÈ

ÊÅqíû˝2

,

ç

6˜Fk

2004

FT|íi˜¶Di˜På¶

,

ƒ

rÖû˝¼µ!ZÇç65Ü“

,

Ĥ

,

…û˝T|ZG(5hi˜På¶

,

Ò*

½-¶ i˜¶Dhi˜På¶}«nÊú¼£d¼µ!ZÇ,

,

Áý>˜b5

A^

…û˝êÛ

:

J

G = (V, E)

ÑL<ú¼£dÝ=²Ç

,

ÊùµDúµÝ

õ5qŸbîó°í‘K-

, 1.

N¬½-¶õÒlDi˜¶íÝõ½bükkhi˜På¶íÝõ½b



,

F)

10

_Çí>˜,b|ýѽ-¶

,

wŸÑi˜¶

,

>˜,b|ÖÑh

i˜På¶

2.

N¬½-¶õÒlDhi˜På¶íÝõ½bükki˜¶íÝõ½b



,

F)

10

_Çí>˜,b|ýѽ-¶

,

wŸÑhi˜På¶

,

>˜b,|

ÖÑi˜¶

3.

N¬½-¶õÒlDi˜¶íÝõ½bkhi˜På¶íÝõ½b

,

F)

208

_Çí>˜,b|ýѽ-¶

,

i˜¶Dhi˜På¶>˜,b†

ó°

4.

N¬½-¶õÒlDi˜¶íÝõ½bükkhi˜På¶íÝõ½b



,

F)

2

_Çí>˜,b|ýѽ-¶Di˜¶

,

>˜,b|ÖÑhi˜P

å¶

5.

N¬½-¶õÒlDi˜¶íÝõ½bkhi˜På¶íÝõ½b

,

F)

446

_Çí>˜,búj¶îó°

6.

½-¶Áý>˜i(5ÇÑ|7Ç

ÉœÈ

:

¼µÇ

,

½-¶

,

i˜¶

,

hi˜På¶

,

Áý>˜i

(3)

Abstract

In the recent year, we have a significant effect making use of the concept diagram or the learning hierarchy map to confer concept learning. Kozo Sugiyama proposed BCM in 1981, not only to promote technology of analysis but also to increase the practicability and readability of hierarchical graph. A modified BCM developed by Tsai reduced time spend on discussion when the identical Barycenter.

Liu proposed EM and EOM in 2004, had been highly regarded among the scholars studying hierarchy. Thus, our purpose is to improved of EOM and then on effects of BCM, EM and NEOM for reducing the crossed edges in proper hierarchical graphs of three layers.

Our results are as follows. Assume that G is a proper hierarchical graph of three layers and has the same indegrees in the 2nd and 3rd layers.

1. We obtain 10 graphs in which the number of the crossed edges reduced by BCM, EM and NEOM respectively has the following relation; BCM < EM < NEOM. 2. We obtain 10 graphs in which the number of the crossed edges reduced by BCM, EM and NEOM respectively has the following relation; BCM < NEOM < EM. 3. We obtain 208 graphs in which the number of the crossed edges reduced by BCM, EM and NEOM respectively has the following relation; BCM < EM = NEOM. 4. We obtain 2 graphs in which the number of the crossed edges reduced by BCM, EM and NEOM respectively has the following relation; BCM = EM < NEOM. 5. We obtain 446 graphs in which the number of the crossed edges reduced by BCM, EM and NEOM respectively has the following relation; BCM = EM = NEOM. 6. The graph obtained by BCM has the minimal number of the crossed edges for

all proper hierarchical graphs of three layers.

Keywords: BCM, EM, NEOM, crossed edges, proper hierarchical graphs. ii

(4)

ñŸ

øı é

ø û˝œ

. . . 01

ù û˝ñíD&½æ

. . . 03

ú ¯Uì2

. . . 03

û û˝Ì„

. . . 07

ùı d.«n

ø ½-¶ÊÁý>˜i5}&

. . . 09

ù ˜F5i˜¶

. . . 21

ú hi˜På¶

. . . 23

û óÉõ„4û˝

. . . 26

úı j¶D¥

ø ½-¶5

Matlab

˙qlÜ1

. . . 33

ù ½-¶Êú¼£d¼µÇ5}&¥

. . . 33

ú i˜¶Dhi˜På¶5

Matlab

˙qlÜ1

. . . 35

û i˜¶Dhi˜På¶5

Matlab

˙ÏW¥

. . . 36

ûı !‹Dn

ø úÁý>˜ij¶5A^ªœ

. . . 39

ù õWð„

. . . 41

üı !D‡

ø !

. . . 47

ù ‡

. . . 48

¡5d.

. . . 49

Ë“

. . . 55

(5)

[ñŸ

[ 2.4.1 Áý>˜i(Ç$í>˜b . . . 28

(6)

ÇñŸ

Ç

1.

R¦A

K. Sugiyama (1981)

5d

ıí¼µ!ZÇ

. . . 13

Ç

2.

¼µÇ

. . . 16

Ç

3.

¼µÇ

. . . 19

Ç

4.

¼µÇ

. . . 19

Ç

5.

Yν-¶§å(FßÞí¼µ!ZÇ

. . . .21

Ç

4.2.1 3

¼£d¼µÇ

. . . 41

Ç

4.2.2

½-¶5Ç

. . . 41

Ç

4.2.3

i˜¶5Ç

. . . 42

Ç

4.2.4

hi˜På¶5Ç

. . . 42

Ç

4.2.5 3

¼£d¼µÇ

. . . 42

Ç

4.2.6

½-¶5Ç

. . . 42

Ç

4.2.7

i˜¶5Ç

. . . 42

Ç

4.2.8

hi˜På¶5Ç

. . . 42

Ç

4.2.9 3

¼£d¼µÇ

. . . 43

Ç

4.2.10

½-¶5Ç

. . . 43

Ç

4.2.11

i˜¶5Ç

. . . 43

Ç

4.2.12

hi˜På¶5Ç

. . . 43

Ç

4.2.13 3

¼£d¼µÇ

. . . 44

Ç

4.2.14

½-¶5Ç

. . . 44

Ç

4.2.15

i˜¶5Ç

. . . 44

Ç

4.2.16

hi˜På¶5Ç

. . . 44

Ç

4.2.17 3

¼£d¼µÇ

. . . 45

Ç

4.2.18

½-¶5Ç

. . . 45

(7)

Ç

4.2.19

i˜¶5Ç

. . . 45

Ç

4.2.20

hi˜På¶5Ç

. . . 45

Ç

4.2.21 3

¼£d¼µÇ

. . . 45

Ç

4.2.22

½-¶5Ç

. . . 45

Ç

4.2.23

i˜¶5Ç

. . . 46

Ç

4.2.24

hi˜På¶5Ç

. . . 46

Ç

1.1

ŸÇ

. . . 55

Ç

1.2

½-¶5Ç

. . . 55

Ç

1.3

i˜¶5Ç

. . . .55

Ç

1.4

hi˜På¶5Ç

. . . 55

Ç

2.1

ŸÇ

. . . 55

Ç

2.2

½-¶5Ç

. . . 55

Ç

2.3

i˜¶5Ç

. . . .56

Ç

2.4

hi˜På¶5Ç

. . . 56

Ç

3.1

ŸÇ

. . . 56

Ç

3.2

½-¶5Ç

. . . 56

Ç

3.3

i˜¶5Ç

. . . .56

Ç

3.4

hi˜På¶5Ç

. . . 56

Ç

4.1

ŸÇ

. . . 57

Ç

4.2

½-¶5Ç

. . . 57

Ç

4.3

i˜¶5Ç

. . . .57

Ç

4.4

hi˜På¶5Ç

. . . 57

Ç

5.1

ŸÇ

. . . 57

Ç

5.2

½-¶5Ç

. . . 57

Ç

5.3

i˜¶5Ç

. . . .58

(8)

Ç

5.4

hi˜På¶5Ç

. . . 58

Ç

6.1

ŸÇ

. . . 58

Ç

6.2

½-¶5Ç

. . . 58

Ç

6.3

i˜¶5Ç

. . . .58

Ç

6.4

hi˜På¶5Ç

. . . 58

Ç

7.1

ŸÇ

. . . 59

Ç

7.2

½-¶5Ç

. . . 59

Ç

7.3

i˜¶5Ç

. . . .59

Ç

7.4

hi˜På¶5Ç

. . . 59

Ç

8.1

ŸÇ

. . . 59

Ç

8.2

½-¶5Ç

. . . 59

Ç

8.3

i˜¶5Ç

. . . .60

Ç

8.4

hi˜På¶5Ç

. . . 60

Ç

9.1

ŸÇ

. . . 60

Ç

9.2

½-¶5Ç

. . . 60

Ç

9.3

i˜¶5Ç

. . . .60

Ç

9.4

hi˜På¶5Ç

. . . 60

Ç

10.1

ŸÇ

. . . 61

Ç

10.2

½-¶5Ç

. . . 61

Ç

10.3

i˜¶5Ç

. . . 61

Ç

10.4

hi˜På¶5Ç

. . . 61

Ç

11.1

ŸÇ

. . . 61

Ç

11.2

½-¶5Ç

. . . 61

Ç

11.3

i˜¶5Ç

. . . 62

Ç

11.4

hi˜På¶5Ç

. . . 62

(9)

Ç

12.1

ŸÇ

. . . 62

Ç

12.2

½-¶5Ç

. . . 62

Ç

12.3

i˜¶5Ç

. . . 62

Ç

12.4

hi˜På¶5Ç

. . . 62

Ç

13.1

ŸÇ

. . . 63

Ç

13.2

½-¶5Ç

. . . 63

Ç

13.3

i˜¶5Ç

. . . 63

Ç

13.4

hi˜På¶5Ç

. . . 63

Ç

14.1

ŸÇ

. . . 63

Ç

14.2

½-¶5Ç

. . . 63

Ç

14.3

i˜¶5Ç

. . . 64

Ç

14.4

hi˜På¶5Ç

. . . 64

Ç

15.1

ŸÇ

. . . 64

Ç

15.2

½-¶5Ç

. . . 64

Ç

15.3

i˜¶5Ç

. . . 64

Ç

15.4

hi˜På¶5Ç

. . . 64

Ç

16.1

ŸÇ

. . . 65

Ç

16.2

½-¶5Ç

. . . 65

Ç

16.3

i˜¶5Ç

. . . 65

Ç

16.4

hi˜På¶5Ç

. . . 65

Ç

17.1

ŸÇ

. . . 65

Ç

17.2

½-¶5Ç

. . . 65

Ç

17.3

i˜¶5Ç

. . . 66

Ç

17.4

hi˜På¶5Ç

. . . 66

Ç

18.1

ŸÇ

. . . 66

(10)

Ç

18.2

½-¶5Ç

. . . 66

Ç

18.3

i˜¶5Ç

. . . 66

Ç

18.4

hi˜På¶5Ç

. . . 66

Ç

19.1

ŸÇ

. . . 67

Ç

19.2

½-¶5Ç

. . . 67

Ç

19.3

i˜¶5Ç

. . . 67

Ç

19.4

hi˜På¶5Ç

. . . 67

Ç

20.1

ŸÇ

. . . 67

Ç

20.2

½-¶5Ç

. . . 67

Ç

20.3

i˜¶5Ç

. . . 68

Ç

20.4

hi˜På¶5Ç

. . . 68

Ç

21.1

ŸÇ

. . . 68

Ç

21.2

½-¶5Ç

. . . 68

Ç

21.3

i˜¶5Ç

. . . 68

Ç

21.4

hi˜På¶5Ç

. . . 68

Ç

22.1

ŸÇ

. . . 69

Ç

22.2

½-¶5Ç

. . . 69

Ç

22.3

i˜¶5Ç

. . . 69

Ç

22.4

hi˜På¶5Ç

. . . 69

Ç

23.1

ŸÇ

. . . 69

Ç

23.2

½-¶5Ç

. . . 69

Ç

23.3

i˜¶5Ç

. . . 70

Ç

23.4

hi˜På¶5Ç

. . . 70

Ç

24.1

ŸÇ

. . . 70

Ç

24.2

½-¶5Ç

. . . 70

(11)

Ç

24.3

i˜¶5Ç

. . . 70

Ç

24.4

hi˜På¶5Ç

. . . 70

Ç

25.1

ŸÇ

. . . 71

Ç

25.2

½-¶5Ç

. . . 71

Ç

25.3

i˜¶5Ç

. . . 71

Ç

25.4

hi˜På¶5Ç

. . . 71

Ç

26.1

ŸÇ

. . . 71

Ç

26.2

½-¶5Ç

. . . 71

Ç

26.3

i˜¶5Ç

. . . 72

Ç

26.4

hi˜På¶5Ç

. . . 72

Ç

27.1

ŸÇ

. . . 72

Ç

27.2

½-¶5Ç

. . . 72

Ç

27.3

i˜¶5Ç

. . . 72

Ç

27.4

hi˜På¶5Ç

. . . 72

Ç

28.1

ŸÇ

. . . 73

Ç

28.2

½-¶5Ç

. . . 73

Ç

28.3

i˜¶5Ç

. . . 73

Ç

28.4

hi˜På¶5Ç

. . . 73

Ç

29.1

ŸÇ

. . . 73

Ç

29.2

½-¶5Ç

. . . 73

Ç

29.3

i˜¶5Ç

. . . 74

Ç

29.4

hi˜På¶5Ç

. . . 74

Ç

30.1

ŸÇ

. . . 74

Ç

30.2

½-¶5Ç

. . . 74

Ç

30.3

i˜¶5Ç

. . . 74

(12)

Ç

30.4

hi˜På¶5Ç

. . . 74

Ç

31.1

ŸÇ

. . . 75

Ç

31.2

½-¶5Ç

. . . 75

Ç

31.3

i˜¶5Ç

. . . 75

Ç

31.4

hi˜På¶5Ç

. . . 75

Ç

32.1

ŸÇ

. . . 75

Ç

32.2

½-¶5Ç

. . . 75

Ç

32.3

i˜¶5Ç

. . . 76

Ç

32.4

hi˜På¶5Ç

. . . 76

Ç

33.1

ŸÇ

. . . 76

Ç

33.2

½-¶5Ç

. . . 76

Ç

33.3

i˜¶5Ç

. . . 76

Ç

33.4

hi˜På¶5Ç

. . . 76

Ç

34.1

ŸÇ

. . . 77

Ç

34.2

½-¶5Ç

. . . 77

Ç

34.3

i˜¶5Ç

. . . 77

Ç

34.4

hi˜På¶5Ç

. . . 77

Ç

35.1

ŸÇ

. . . 77

Ç

35.2

½-¶5Ç

. . . 77

Ç

35.3

i˜¶5Ç

. . . 78

Ç

35.4

hi˜På¶5Ç

. . . 78

Ç

36.1

ŸÇ

. . . 78

Ç

36.2

½-¶5Ç

. . . 78

Ç

36.3

i˜¶5Ç

. . . 78

Ç

36.4

hi˜På¶5Ç

. . . 78

(13)

Ç

37.1

ŸÇ

. . . 79

Ç

37.2

½-¶5Ç

. . . 79

Ç

37.3

i˜¶5Ç

. . . 79

Ç

37.4

hi˜På¶5Ç

. . . 79

Ç

38.1

ŸÇ

. . . 79

Ç

38.2

½-¶5Ç

. . . 79

Ç

38.3

i˜¶5Ç

. . . 80

Ç

38.4

hi˜På¶5Ç

. . . 80

Ç

39.1

ŸÇ

. . . 80

Ç

39.2

½-¶5Ç

. . . 80

Ç

39.3

i˜¶5Ç

. . . 80

Ç

39.4

hi˜På¶5Ç

. . . 80

Ç

40.1

ŸÇ

. . . 81

Ç

40.2

½-¶5Ç

. . . 81

Ç

40.3

i˜¶5Ç

. . . 81

Ç

40.4

hi˜På¶5Ç

. . . 81

Ç

41.1

ŸÇ

. . . 81

Ç

41.2

½-¶5Ç

. . . 81

Ç

41.3

i˜¶5Ç

. . . 82

Ç

41.4

hi˜På¶5Ç

. . . 82

Ç

42.1

ŸÇ

. . . 82

Ç

42.2

½-¶5Ç

. . . 82

Ç

42.3

i˜¶5Ç

. . . 82

Ç

42.4

hi˜På¶5Ç

. . . 82

(14)

øı

é

ø

û˝œ

A*

øøí{˙ZÕJV

,

úkf$`çV'×í§U

,

U)`ÊA)`

‡,

ÿˇ]- ÄÑÅü{˙í`ç·½wø 8< x?úç3

,

Ĥ

,

6ŒçÞx

£üíç3ø…u`Ê`ç,Ûb#8íç3j

,

éçÞúk{˙?D¢}ø¦

/?ÞÍ

,

1

?)ƒ|7íç3A^

;WÅqÕç6íû˝

,

‚à–1ÇCç3¼µÇV«nç©í–1ç35A^

,

˛éOí^ï ÄÑÊ–1ÇDç3¼µÇíÜÊ®ç–1,·æÊO,-P

í©!É[ à

Hawk (1986)

Jý£þíçÞdÑû˝úï

,

à–1Çíj

`ûçÞ

,

û˝!‹êÛ

,

õð íçÞÊAô,í[ÛikúÎ  –1ÇíÜ

!€u

Ausubel (1968)

FT

Lí<2ç3

(meaningful learning), Ausubel

wÑñ

Êl‡ø…í!€,

,

N¬°“øh

Hø…‹J©!

,

à¤j?®A<2íç3

n…ç6˙t¨

(K. Sugiyama)

Ak

1981

N|

,

ø_ñqéA©èÜjí–1

Ç@vxe

: (

ø

)

–1b¼µ“íTÜ

(

ù

)

É:í>˜ibbý

(

ú

)

–1

?}0íÌ

Gú˚

(

û

)

©Qíi.b¬Å J£

(

ü

)

É:?Jò(íjú`

,

¥üáÔ”

,

Ĥ

,

,Hü_Ô”øŽâÇ$Üž²Aû_xñíj²¥

,

é–1Ç?øñ7Í 7Ê

f$–1Çí˙å

,

}ø3bí–10k2È

,

éwFóÉ–1[Ê})í¶}

,

$A

cÕ!ZÇíÇ$

,

FJʪW–1ZÇí`T

,

%%xÖ_Ž-–1F AícÕ

!Z

(

3¬ž

,1997)

 Åqç6ÏÁA

(1998)

{J¯Tç3–1ZÇÑ`ç-Z

,

V

ªW`çõð

,

!‹éý¯T–1ZÇíç3A^ik_ç3–1ZÇ

,

7_

ç3–1ZÇç3^‹¢ªf$`ç^‹Víß

1

(15)

7ÊÅqÉkj²¼µÇ>˜i¬Ö½æ5û˝2

,

±<•

(2006)

‚àç

6˜F

k

2004

ZGA

IM

¶5s½b

,

T|Wk

IM

¶5i˜Di˜Pås

Áý¼µÇ>˜ib5hj¶

,

1D

IM

¶døA^ªœ ±<•íû˝N|

IM

¶

i˜¶Di˜På¶

,

Ê

8

_Ýõí

20

__ÒWä2

,

új¶Ìœ

ISM

¶F

)|¼µÇ5>˜ibÑý

,

7új¶˛¤Ê¼µÇÁý>˜ib5A^,

,

éýi

˜På¶Áý>˜ií^‹|7

,

wŸÑ

IM

,

yŸÑi˜¶

,

|(u

ISM

,

Í7

,

±<•íû˝!‹1„øO4Ëúj¶

,

˛¤Ê¼µÇÁý>˜ib5A

^

>\

(2007)

ÊZG˙t¨Æ¶5A^êÛZG(íƶÊ˙«v

È

,

ýk˙t¨5ƶ

,

,

ZG(5ƶx–°½-5Š? (V

,

Á

(2007)

!kîh4˪œ}&

IM

¶ i˜¶Di˜På¶

,

zp7új¶

˛¤Ê¼µÇÁý>˜ib5A^

,

êÛ7_bõ

:

,

úkù¼£dÝ=²

Ç5Áý>˜iTÜ

, IM

¶íTÜA^Ì

,

J‘²?[0k×2-W|¡íÝõÑ

Ć

,

v¥7).ƒ|ý>˜iíÇ ù

, IM

¶Ýõ5½bükki˜¶5

½b

,

/i˜¶5½bükki˜På¶5½b

,

Ê/<‘K-

,

új

¶F)5A^ó°

,

ÉkÁý>˜i5j¶

,

@àÊ0ªè4ò5bDl`

‡ËPǪ)ƒú_–1}ˇí^‹

!k¤

,

…û˝Ò¡5>\

(2007)

 ±<•

(2006)

J£5ÙÁ

(2007)

5ø¶}

,

$Ç‚àÝõí½§êÛhj¶D új¶A^}&Êú¼£d¼µÇ,íøO

4!‹

2

(16)

ù

û˝ñíD&½æ

…û˝ðÊ«n½-¶ i˜¶Dhi˜På¶}Êú¼£d¼µÇ,

,

Á

ý>˜b5ª

œ}& ÇÕ

,

…û˝;W,H!‹ÔJßõW

,

ªWð„

uJ

,

…û˝5&½æà-

:

ø *Üíhõû|½-¶ i˜¶Dhi˜På¶}Êú¼£d¼µ!Z

Ç,

,

Áý>˜b5A^

ù ®ÔøõWð„ÜhõF)5!‹

ú

¯Uì2

…û˝Ò«níúÁý>˜i5j¶2

,

u°Uàƒí±ÈD¯Uì2k-

,

B

kwFj¶_ì2í¶M

,

†\

GÊùı2Ü

: 1.

¼µÇ

ø¼µÇ

(hierarchy) G,

L1, L2· · · , Ln

DiíÕ¯

E ⊆ V × V

FZA

,

p

G = (V, E),

w2

V = ∪n

i=1Li

/

Li

[u

i

µFAíÕ¯

2. n

¼¼µÇ

©ø_jÖ

e = (vi, vj) ∈ E,

w2

vi ∈ Vi

Å—

i < j,

/©_iÊÕ¯

E

Ñ

ñø Ĥ

,

n

¼í¼µÇ[ýÑ

G(V, E, n)



3.

£d¼µÇ

n

¼µÇ

G(V, E, n)

2

,

J²i

(vi, vj) ∈ E

/

vi ∈ Vn, vj ∈ Vn+1,

¹˚²

i

(vi, vj)

Ñsi

,

¥5˚ÑÅi J

n

¼µÇ

G(V, E, n)

2FíiîÑsi

,

¹˚Ñ£d¼µÇ

(17)

4. 3

¼£d¼µÇ

q

G = (V, E)

Ñ

3

¼Ý=²Ç

,

J

E

25²iÌâó

¹sµíÝõFZ

A

,

G = (V, E)

˚Ñ

3

¼£dÝ=²Ç

,

3

¼£d¼µÇ ²k5

,

J

E ⊂S3−1 i=1 Li× Li+1,

G = (V, E)

˚Ñ

3

¼£

d¼µÇ ;W£d¼µÇ

5ì2

,

£d¼µÇ2

,

.æÊÅi

(

?

¹F¬s¼µJ,í²i

)



5.

²Ç

G(V, E)

˚ѲÇ

(directed raph),

J/ÑJÝõÕ¯

V = {v1, v2· · · , vn}

Ñ

øÌÕ¯

,

/iÕ¯

E ⊆ V × V

ÑÝõÕ¯

V

íùjåúíäÕ

,

˚

E

jÖѲi

,

¹²i

e = (vi, vj) ∈ E

/

{vi, vj} ∈ V ,

°v˚

vi

Ѳií

–áõ

, vj

Ѳiíõ

6.

Ý=²Ç

²Ç

G(V, E)

2

,

.æÊáõDõÑ°øÝõ5¥−v

,

˚

G(V, E)

ÑÝ

=²Ç

(directed acyclic graph)



7. n

¼²Ç

Ý=²Ç

G = (V, E)

2

,

J

V = ∪n i=1Li,

w2

Li

[ý

i

µÝõFAí

Õ¯

,

G = (V, E)

˚Ñ

n

¼²Ç

8. n

¼Ý=²Ç

Ý=²Ç

G = (V, E)

2

,

J

V = Sn i=1Li,

w2

Li

[ýâ|µ–

i

µÝõFAíÕ¯

,

G = (V, E)

˚Ñ

n

¼Ý=²Ç

9.

¹

I

Nu+1 = ui ∈ Li | (ui, ui+1) ∈ E,

†˚

Nui+1

ÑÝõ

ui+1

5¹

(neighbor-hood)



(18)

10.

¥−

q

k

_Ýõ

{v1, v2, · · · , vk} ∈ V ,

†²Ç

G = (V, E)

2

,

*Ýõ

v1

,

¤2%¬

k − 1

_²i

−−→v2v3, −−→v3v4, · · · , −−−−−→vk−2vk−1,

|(ƒ®Ýõ

vk

5˜˚

T¥−

(path),

pT

W = {v1, v2, v3, v4, · · · , vk−2, vk−1, vk} ,

¤v

, v1

˚Ñ

W

5áõ

(initial vertex), vk

˚Ñ

W

5õ

(final vertex),

¥−

W

5Åì2Ñ

k,

°v

,

áõDõó°5¥−íÅì2Ñ

0



11.

%âi

Ý=²Ç

G = (V, E)

2

,

cq

−−→vkvl∈ E



JæÊ¥−

W = {vi, · · · , vk, · · · , vl, · · · , vj}

v

,

˚²i

−−→vkvl

Ñ¥−

W

5%âi

(passed edge),

/Ýõ

vk, vl

1.øìb

ó¹

12.

¹Q

ä³

Ý=²Ç

G = (V, E)

2

,

q

V = {x1, x2, · · · , xn}

/

aij =        1 if −−→xixj ∈ E, 0 if −−→xixj ∈ E./

†˚

ä³

A = [aij]n×n

Ñ

G = (V, E)

5¹Q

ä³

(adjacency matrix)



13.

ªƒ®

ä³

Ý=²Ç

G = (V, E)

2

,

q

V = {x1, x2, · · · , xn}

/

rij =        1

JæÊ¥−

W

U)

xi

D

xj

}Ñ

W

5áõDõ

, 0

wF

.

†˚

ä³

R = [rij]n×n

Ñ

G = (V, E)

5ªƒ®

ä³

(reachability matrix)



5

(19)

14.

qŸb

q

G = (V, E)

Ñ

n

¼£dÝ=²Ç

, G

2FJ

v

Ñõ/¥−ÅÑ

1

5¥−,b˚ÑqŸb

(in-degree)



15.

ÕŸb

q

G = (V, E)

Ñ

n

¼£dÝ=²Ç

, G

2FJ

v

Ñáõ/¥−ÅÑ

1

5¥−,b˚ÑÕŸb

(out-degree)



16.

>˜i

q

G = (V, E)

Ñ

n

¼£dÝ=²Ç

,

†L<s_²ió>v

,

˚Ñ>˜

…û˝Êl>˜íb¾v

,

úú¼²i˛¤ó>/uõí8$

,

EJ

3

_>

˜lb

,

Ĥ

, k

_²i˛¤ó>/¶MÝõuõí8$

,

J

k(k−1) 2

_>˜l

b

ÇÕ

,

Áý>˜i

(crossing edge)

4N_ç˽§

n

¼£dÝ=²Ç®

µíÝõßå

,

7.Z‰ÝõDÝõÈ,-P5¼µÉ[

,

U)F)5Çí>˜

,b‰ýíÝõ½§T“

,

Áý>˜iTÜ(5Ç˚Ѫè4ò5Ç

17.

ÏÕDò

q

C

D

D

ÑsÕ¯

,

†ì2ÏÕ

(difference) C \ D

(direct product)

C × D

à-

: C \ D = {c : c ∈ C

/

c /∈ D}, C × D = {(c, d) : c ∈ C

/

d ∈ D}. 18. #V

¯U

#V

[ýÕ¯

V

2FjÖ5_b

19.

Ó«‹¶

DÓ« ¶

I

A = [aij]1≤i,j≤n, B = [bij]1≤i,j≤n

Ñsj³/úL<

i, j,

cq

aij, bij ∈ {0, 1}



Ûì2sj³5Ó«‹¶

(Boolean addition)

Ñ

: AL B = [aij ⊕ bij]1≤i,j≤n,

s

(20)

j

³5Ó« ¶

(Boolean multiplication)

Ñ

: AN B = [aij ⊗ bij]1≤i,j≤n,

w2

x ⊕ y =        0 x = 0, y = 0, 1

wF

. , x ⊗ y =        1 x = 1, y = 1, 0

wF

.

û

û˝Ì„

ø …û˝F5?íú¼£d¼µÇ

,

.

ÖÅi

,

6ÿuF¬sµ

(

Ö

)

J,5²

i

,

úkÅiíTÜ

,

ªN¬‹p™ÒõD™ÒixX

,

ª

ž²Ñ.ÖÅiíÕ”

,

Ĥ

,

…û˝úÅií¼µÇ.‹JqÌ

ù ‡ú…û˝ñí

,

ø

Ì„ÊÝ=²Ç5_Ò’eíßÞ

,

J£_Ò’eíª

ú

(21)
(22)

ùı

d.«n

Ñ7ûnÁý>˜iíúj¶íªœ

:

½-¶ i˜¶Dhi˜På¶

,

ı}AûVªWóÉd.«n

,

F

×ÛíqñÌùàŸOd

,

ø«n½-¶Ê

Áý>˜i5}&

,

ù«n˜F5i˜¶

,

ú«nhi˜På¶

,

Ñõ„4û˝

ø

½-¶ÊÁý>˜i5}&

½-¶uâ˙t¨

(K. Sugiyama)

k

1981

T|

,

‡ús¼µí¼µÇ

,

‚àÓ

ÜÓG©íòhj

,

øw2ø¼µeÑ ìõ

,

Çø¼µeѪí”õ

,

1/

l©_”õí½-M×ü

,

l½-M(YWw”õ½-M×üdâüƒ×í§å

,

çs_

”õxó°í½-M

,

þt>²s”õíFÊP0

,

ðu´®ƒÁý

>˜i5ñí

,

JÁý>˜ib†>²¥s_”õíP0

,

J>˜ib³Áý

,

\GŸVíóúP0

‚ग़s¼µí½-l£§å

,

J£¥ºÏW½-í§åLH

,

F‚½-í§

åLHuâ ìø¼µíÝõ

,

l£§åùµíÝõ

,

Ç᥺ÏWòƒ

i − 1

¼µ2íÝõ

,

l¸§åê

i

µíÝõP0

,

òƒ

n

¼µ2íÝõ§åêÑ¢

,

Ê¥¬VÏW ì

n

¼µíÝõ

,

l¸§å

n − 1

¼µíÝõ

,

°š¥ºÏWò

ƒ ìù¼µÝõ

,

l¸§åêø¼µíÝõÑ¢

,

¥ší˙åÊ˙t¨2}

˚Ñ,½-¶£-½-¶

,

C˚ÑW½-¶£½-¶

ì2 2.1.1.

ÊÝ=²Ç

G(V, E)

2

,

ì2©!

ä³à-

: (1) M(i) = M (σ i, σi+1)

Ñø_

| Vi | × | Vi+1|

í

ä³

,

w2

,

ä³íWD5jÖ}

(23)

Ñ

σi

D

σi+1



(2)

I

σi = v1· · · vk· · · v|v i|

£

σi+1 = w1· · · wk· · · w|vi+1|

 †

(vk, wl)

Ñ

ä³

M i

2

íø_jÖ

,

m(i)kl

 w2

m(i)kl =        1 (vk, wl) ∈ Ei 0 (vk, wl) /∈ Ei ,

˚

Mi

Ñ©!

ä³

. ìÜ 2.1.2.

cq

i

¼µíjÖÕ¯Ñ

v = {a1, a2, a3, . . . , an},



i + 1

¼µíjÖ

Õ¯Ñ

u = {b1, b2, b3, . . . , bm},

†

i

µD

i + 1

µÈí>˜ibÑ

K(v, u) = m−1 X k=1 m X j=k+1 n−1 X α=1 n X i=α+1 m(i)αjm(i)ik ! . „p:

5?

M(i),

¹5?

i

µD

i + 1

µí>˜ib

íl

,

w©!

ä³Ñ

b1 b2 · · · bm a1 m (i) 11 m (i) 12 · · · m (i) 1m a2 m(i)21 m (i) 22 · · · m (i) 2m .. . ... . .. ... an m (i) n1 m (i) n2 · · · m (i) nm

w2

, m(i)ij =        1 if aibj ∈ E, 0 if aibj ∈ E,/ (1)

J

a1

D

b1

©!

,

†.wFÝõu´©i

,

î.} à>˜ib

(2)

J

a1

D

b2

©!

,

(m (i) 12 = 1)



J

b1

D

{a2, a3, . . . , an}

©!

,

†}ßÞ>

˜i

,

]ªl|Di

(a1, b2)

>˜í>˜ibÑ

Pn i=2m (i) 12m (i) i1



(24)

(3)

J

a1

D

b3

©!

,

(m (i) 13 = 1)



(4)

J

b1

D

{a2, a3, . . . , an}

©!

,

†}ßÞ>˜i

,

]ªl|Di

(a1, b3)

>

˜í>˜ibÑ

Pn i=2m (i) 13m (i) i1



(5)

J

b2

D

{a2, a3, . . . , an}

©!

,

†}ßÞ>˜i

,

]ªl|Di

(a1, b3)

>

˜í>˜ibÑ

Pn i=2m (i) 13m (i) i2

 u]

,

J

a1

D

b3

©!

,

†øßÞ>˜ibÑ

Pn i=2m (i) 13m (i) i1 + Pn i=2m (i) 13m (i) i2



(6)

J

b1

D

{a2, a3, . . . , an}

©!

,

†}ßÞ>˜i

,

]ªl|Di

(a1, b4)

>

˜í>˜ibÑ

Pn i=2m (i) 14m (i) i1



(7)

J

b2

D

{a2, a3, . . . , an}

©!

,

†}ßÞ>˜i

,

]ªl|Di

(a1, b4)

>

˜í>˜ibÑ

Pn i=2m (i) 14m (i) i2



(8)

J

b3

D

{a2, a3, . . . , an}

©!

,

†}ßÞ>˜i

,

]ªl|Di

(a1, b4)

>

˜í>˜ibÑ

Pn i=2m (i) 14m (i) i3



u]

,

J

a1

D

b4

©!

,

†øßÞ>˜ibÑ

n X i=2 m(i)14m(i)i1 + n X i=2 m(i)14m(i)i2 + n X i=2 m(i)14m(i)i3.

°ÜªR)

,

5?J

a1

D

bm

©!

,

(m (i) 1m = 1),

†>˜ibÑ

n X i=2 m(i)1mm(i)i1 + n X i=2 m(i)1mm(i)i2 + n X i=2 m(i)1mm(i)i3 + · · · + n X i=2

m(i)1mm(i)i(m−1).

â

(1) ∼ (5)

ªJl|

,

J

a1

D

bk

©!

,

†ßÞí>˜ibÑ

n X i=2 m(i)12m(i)i1 + n X i=2 m(i)13m(i)i1 + n X i=2 m(i)13m(i)i2 + n X i=2 m(i)14m(i)i1 + n X i=2 m(i)14m(i)i2 + n X i=2 m(i)14m(i)i3 + · · · + n X i=2 m(i)1mm(i)i1 + n X i=2 m(i)1mm(i)i2 + n X i=2 m(i)1mm(i)i3 + · · · + n X i=2

m(i)1mm(i)i(m−1) =

m−1 X k=1 m X j=k+1 n X i=2 m(i)1jm(i)ik ! , k = 1, 2, · · · , m.

(25)

y5?

a2

D

bk

©!

,

ª)>˜ibÑ

Pm−1k=1 Pmj=k+1  Pn i=2m (i) 2jm (i) ik 

°íj

,

5?

D

bk

©!ví>˜ib}Ñ

m−1 X k=1 m X j=k+1 n X i=2 m(i)3jm(i)jk ! , m−1 X k=1 m X j=k+1 n X i=2 m(i)4jm(i)ik ! , · · · , m−1 X k=1 m X j=k+1 n X i=2 m(i)(m−1)jm(i)ik ! ,

w2

α = 1, 2, · · · , n.

â

(6) ∼ (8),

øF>˜ib‹,

,

ª),>˜ibÑ

m−1 X k=1 m X j=k+1 n X i=2 m(i)1jm(i)ik ! + m−1 X k=1 m X j=k+1 n X i=2 m(i)2jm(i)jk ! + · · · + m−1 X k=1 m X j=k+1 n X i=2 m(i)(n−1)jm(i)jk ! = m−1 X k=1 m X j=k+1 n−1 X α=1 n X i=α+1 m(i)αjm(i)ik ! . 

âìÜ

2.1.2

ªl)¼µÇ

G(V, E)

í,>˜ibÑ

K(g) = K(M(1)) + K(M(2)) + · · · + K(M(n−1)). ì2 2.1.3.

Jø_²¾

y = (y1, y2· · · ym)

7k

,

½-P0ílì2Ñ

Dy = Pm j=1j · yj Pm j=1yj . ì2 2.1.4.

ì2©Q

ä³íW½-

,

½-Ñ

:

½-Ñ

: BRik = P|Vi+1| l=1 l · m (i) kl P|Vi+1| l=1 m (i) kl , k = 1, 2, · · · , | Vi |,

W½-Ñ

: BCil = P|Vi| l=1k · m (i) kl P|Vi| l=1m (i) kl , k = 1, 2, · · · , | Vi+1| . ì2 2.1.5.

ì2ø_ù¼µÇí,½-D-½-Ñ

:

,½-Ñ

: BikU = P|Vi−1| j=1 x(v i−1 j ) · m (i−1) jk CU ik , k = 1, 2, · · · , | Vi |,

(26)

-½-Ñ

: BilL= P|Vi+1| l=1 x(v i+1 l ) · m (i) kl CL ik , k = 1, 2, · · · , | Vi |,

w2

,CU ik

Ñ,©!b

,C L ik

Ñ-©!b

ì2 2.1.6.

J#ì

i

µD

i + 1

µ5¹Q

ä³

Mi = [mij]p×q, p =| Li |

/

q =| Li+1|,

†ì2

i

µD

i + 1

µ5>˜ibÑ

K(Mi) = p−1 X j=1 p X k=j+1 q−1 X α=1 q X β=α+1 m(i)m(i) ! ,

n

¼µí,>˜ibÑ

K(M ) = K(M1) + K(M2) + K(M3) + · · · + K(Mn+1),

w2

M

ѹQ

ä³ Wà

: a b c d e f g h i j k l m 第一層 第二層 第三層 第四層    

e

f

g

h

b

c

d

a

   

f

e

g

h

a

d

b

c

 

Ç

1.

R¦A

K. Sugiyama (1981)

5dıí¼µ!ZÇ

wij

5Ô„Ç

w2

M1 = d e f g a 1 0 1 1 b 0 0 0 1 c 0 0 1 0 , K(M1) = 2,

(27)

M2 = h i j k d 1 0 1 0 e 0 1 0 0 f 0 1 0 0 g 0 1 1 0 , K(M2) = 3, M3 = l m h 1 1 j 1 0 j 1 0 k 1 1 , K(M3) = 3,

7

M =             0 M1 0 0 0 0 M2 0 0 0 0 M3 0 0 0 0             ,

K(M ) = K(M1) + K(M2) + K(M3) = 2 + 3 + 3 = 8.

ø ½-¶5Æ¥

: (

ø

)

Ésµ5ç3¼µíƶ

1.

ƒbì2

: (1) K(·) :

[ýø¹Q

ä³øƒÝŠcb5ƒb

(28)

I

M (mij)1≤i≤|L 1|,1≤j≤|L2|

Ñø¹Q

ä³

,

K(M ) = |L1|−1 X j=1 |L1| X k=j+1 |L2|−1 X α=1 |L2| X β=α+1 mjβmkα. (2) βC(·) :

[ýø¹Q

ä³øƒ;WW½-M½h§vä³íW(

,

F

)

ä³5ƒb I

M (mij)1≤i≤|L 1|,1≤j≤|L2|,

/

B C j1 < B C j2 < B C j|L2|,

βc(M ) = N = (mijk)1≤i≤|L1|,1≤k≤|L2|. (3) βR(·) :

[ýø¹Q

ä³øƒ;W½-M½h§vä³í(

,

F

)

ä³5ƒb I

M (mij)1≤i≤|L 1|,1≤j≤|L2|,

/

B R i1 < B R i2 < B R i|L1|,

βR(M ) = L = (mikj)1≤k≤|L1|,1≤j≤|L2|. (4) RC(·) :

I¹Q

ä³

M = (mij)1≤i≤|L1|,1≤j≤|L2|

Å—

B C j1 = B C j2,

RC(M ) = (nij)1≤i≤|L1|,1≤j≤|L2| ,

¥³

nij =                mij

J

j /∈ j1, j2, mij2

J

j = j1, mij1

J

j = j2. (5) RR(·) :

I¹Q

ä³

M = (mij)1≤i≤|L1|,1≤j≤|L2|

Å—

B R j1 = B R j2,

RR(M ) = (nij)1≤i≤|L1|,1≤j≤|L2| ,

¥³

nij =                mij

J

j /∈ j1, j2, mij2

J

j = j1, mij1

J

j = j2. 2.

Æ¥

:

˙t¨5ƶ

,

}Ñs¼¨M¥ªW

(1)

ø¼¨

(

½-Mî.°v

)

(29)

¥

1:

qì€á½µ=ø¼¨Æ5Ÿb

(

£LHŸb

) r,

Í(

l

K(M1),

¥³

M1

[ýÑ

1

µD

2

µ5¹Q

ä³

¥

2:

I

M2 = βR(M1)



¥

3:

J

K(M2) < K(M1) ,

†I

M∗ = M2 , K∗ = K(M2)



¥

4:

I

M3 = βC(M2)



¥

5:

J

K(M3) < K∗ ,

M∗ = M3 ,K∗ = K(M3)



¥

6:

J

M3 = M1

C

LHŸbß×k

r ,

†!!ø¼¨Æ

,

ªpù¼¨Æ ´†

,

ƒø¼¨í¥

2



(2)

ù¼¨

(

|Ûó°

½-Mv

)

¥

1:

I

M4 = RC(M3)



¥

2: M4

5

½-MJ.uâüƒ×§v

,

†I

M1 = M4,

/ƒ

ù¼¨¥

5,

´†ªW¥

3



¥

3: M5 = RR(M4)



¥

4: M5

5

½-MJ.uâüƒ×§

,

†I

M1 = M5,

/ƒ

ù¼¨¥

5,

´†

!!ÏW

¥

5:

Jù¼¨5LHŸb×k€áMv

,

†!!ÏW

,

´†ƒ

ø¼¨

2

¥ 

¸Wzp

:  

e

f

g

h

b

c

d

a

   

g

e

f

h

d

c

a

b

Ç

2.

¼µÇ

16

(30)

¥

1:

Ÿ|¹Q

ä³

M1 = e f g h BkR a 0 1 0 1 3 b 1 0 1 0 2 c 1 0 0 1 2.5 d 0 1 1 0 2.5 BlC 2.5 2.5 3 2 , K(M1) = 11,

¤¹Q

ä³l|í½-M

,

YÎ

½-Mí×ü

,

â,B-

,

âü

B×Yå§ OÄÑ|Ûó°½-M

,

Ĥ

,

ʧåvó°í½

-

M.âss²

,

v||üí>˜ib

¥

2:

ø

½-MO×üŸå§

,

M2 = e f g h BR k b 1 0 1 0 2 c 1 0 0 1 2.5 d 0 1 1 0 2.5 a 0 1 0 1 3 BlC 1.5 3.5 2 3 , K(M2) = 7,

J£ó°

½-M>²§å)ƒ

M3 = e f g h BR k b 1 0 1 0 2 d 0 1 1 0 2.5 c 1 0 0 1 2.5 a 0 1 0 1 3 BC l 2 3 1.5 3.5 , K(M3) = 7,

(31)

¥

3:

ø

W½-MO×üŸå§

,

/ó°

W½-M6Û>²§åJ)ƒ

|ü>˜ib

,

Ĥ

, i.

â¹Q

ä³

M2

M4 = e f g h BkR b 1 1 0 0 1.5 c 1 0 1 0 2 d 0 1 0 1 3 a 0 0 1 1 3.5 BCl 1.5 2 3 3.5 , K(M4) = 3,

¤¹Q

ä³%âW½-M§åîYÎ×üßå§

,

Ĥ

,

>˜ibÑ

3

 FJÆ

¥ !!

ii.

â¹Q

ä³

M3

M5 = g e f h BR k b 1 1 0 0 1.5 d 1 0 1 0 2 c 0 1 0 1 3 a 0 0 1 1 3.5 BlC 1.5 2 3 3.5 , K(M5) = 3,

¤¹Q

ä³íW½-MîYÎ×üßå§

,

Ĥ

,

|ü>˜i

D

K(M4)

°Ñ

3

 /ªœ®

K(Mi),i = 1, 2, · · · , 9 ,

)ƒ|ý>

˜ibÑ

3

í|

7¼µÇà-

:

(32)

 

e

f

g

h

b

c

d

a

   

g

e

f

h

d

c

a

b

 

Ç

3.

¼µÇ

(

ù

)

sµJ,5ç3¼µÇíƶ

cqvç3¼µÇ

n

µ

,n > 2 ,

-ÑÆ¥

: 1.

ì

1

µ

,

;W

(

ø

)2.

5ƶ§

2

µ2áõ5ßå

2.

ì§åê(5

2

µ

,

y;W

(

ø

)2.

5ƶ§

3

µ2áõ5ß

å

3.

Y¤éR

,

òƒ§ê

n

楛

4.

ì

n

µ

,

y;W

(

ø

)2.

5ƶ§

n − 1

µ2Ýõ5ßå

5.

ì§åê(5

n − 1

µ

,

y;W

(

ø

)2.

5ƶ§

n − 2

µ2Ý

õ5ßå

6.

Y¤éR

,

òƒ§ê

1

楛

ù ½-¶Æ¥ ½æõDõWzp

¹Q

ä³

M

2

,

¬Öó°½-Mv

,

Æ¥ ù¼¨25

RC(M )

C

RR(M ),

øÞ@̶ì2í½æ

õWzp

: a b c d e f g h i j k l m 第一層 第二層 第三層 第四層    

e

f

g

h

b

c

d

a

   

f

e

g

h

a

d

b

c

Ç

4.

¼µÇ

19

(33)

¥

1:

Ÿ|¹Q

ä³

M1 = e f g h BR k a 1 1 1 0 2 b 0 0 1 1 3.5 c 0 1 0 0 2 d 1 0 1 0 2 BC l 2.5 2 2.3 2 , K(M1) = 9,

¤¹Q

ä³ßÞú_ó°½-íM

,

]̶^

‡iwl(Ÿå

,

Ĥ

,

.

âø¤ú_jÖss>²

,

1°v«n>²(FßÞí>˜ib -ø>

²(ßÞ5>˜ibœý6

,

T|n

¥

2:

ø

½-MO×üßå§

,

M2 = e f g h BR k c 0 1 0 0 2 d 1 0 1 0 2 a 1 1 1 0 2 b 0 0 1 1 3.5 BC l 2.5 2 3 4 , K(M2) = 4,

¥

3:

ø

W½-MO×üßå§

,

M3 = f e g h BR k c 1 0 0 0 1 d 0 1 1 0 2.5 a 1 1 1 0 2 b 0 0 1 1 3.5 BC l 2 2.5 3 4 , K(M3) = 3,

(34)

¥

4:

ø

½-M%×üŸå§(

,

M4 = f e g h BR k c 1 0 0 0 1 a 1 1 1 0 2 d 0 1 1 0 2.5 b 0 0 1 1 3.5 BC l 1.5 2.5 3 4 , K(M4) = 1,

ÄÑ

W½-MD½-M·˛%O×üŸå§

,

]ªJ)ƒ|ý>˜ib

Ñ

1,

w|(§íÇ$à-

: a b c d e f g h i j k l m 第一層 第二層 第三層 第四層    

e

f

g

h

b

c

d

a

   

f

e

g

h

a

d

b

c

 

Ç

5.

½-¶§å(FßÞí¼µ!ZÇ

ù

˜F5i˜¶

Ô i˜–1¶

ì2 2.2.1.

ÊÝ=²Ç

G = (V, E)

2

,

J

−−→vkvl ∈ E,

†˚

E(vk, vl; G) =W : −−→vkvl

Ñ¥−

W

5%âi

ÑÝõ

vk, vl

5%â˜Õ

ì2 2.2.2.

ÊÝ=²Ç

G = (V, E)

2

,

J

−−→vkvl ∈ E,

†˚

Av(vi) = {v :

æʘ

W

U)

v, vi

}Ñ

W

5áõ

,

}

(35)

ÑÝõ

vi

5lW˜Õ

Aw(vi) = {W :

æʘ

W

U)

v, vi

}Ñ

W

5áõ

,

} ì2 2.2.3.

ÊÝ=²Ç

G = (V, E)

2

,

J

−−→vkvl ∈ E,

†˚

Av(vi) = {v :

æʘ

W

U)

vi, v

}Ñ

W

5áõ

,

}

ÑÝõ

vi

5lW˜Õ

Aw(vi) == {W :

æʘ

W

U)

vi, v

}Ñ

W

5áõ

,

} ìÜ 2.2.4.

J

G(V, E)

ÑÝ=²Ç

,

#E(vk, vl; G) = #A2(vk) #R2(vl). „p:

;W

E(vk, vl; G)

DÕ¯5ò íì2ª)„…ìÜ

 ì2 2.2.5.

Ý=²Ç

G(V, E)

2

,

ì2²i

−−→vkvl ∈ E

5i˜½b

J (vk, vl; G)

à-

: J (vk, vl; G) = #E(vk, vl; G). ì2 2.2.6. (i) G

5¹Q

ä³

AG

ì2à-

: AG = [aij]n×n,

w2

aij =        1 −v−→kvl ∈ E, 0

wF

. (ii) G

5ª®

ä³

RG

ì2à-

: RG = [rij]n×n,

w2

rij =        1 vi

B

vj

˜5ª®

, 0 vi

B

vj

̘5ª®

.

(36)

(iii) G

5i˜

ä³

(eage-path matrix) EG ,

ì2à-

: EG = [ekl]n×n ,

w2

ekl = #[E(vk, vl)|G]. ìÜ 2.2.7.

Ý=²Ç

G(V, E)

2

,

cq

#V = n

/

A

Ñ

G = [aij]1≤i,j≤n

5¹Q

ä³

,

Ij³

P = [pkl]1≤k,l≤n =Pn−1 i=1 A i,

J (vk, vl; G) = n X i=1 pik ! akl n X j=1 plj ! . „p:

ÄÑ

E(vk, vl; G) = #A2(vk) #R2(vl), #A2(vk) = n X i=1 pik, #R2(vl) = n X j=1 plj,

FJ)„…ìÜ

 ì2 2.2.8.

q

G(V, E)

ÑÝ=²Ç

,

/

Jv(vi; G) = n X j=1,j6=i {J(vi, vj; G) + J (vj, vi; G)} ,

†˚

Jv(vi; G)

Ñi˜¶2Ýõ

vi

5½b

Ž i˜¶5ƶ

i

˜¶5ƶâû_!…¥  ²Ï¶†D[0¶†újÞFZA D

IM

¶íρ

ÉʽbíËj

,

¹}J

J (vk, vl; G), Jvw(vk, vl; G)

D

Jv∗(vk, vl; G)

V¦H

I(vk, vl; G), Ivw(vk, vl; G)

D

Iv∗(vk, vl; G)



ú

hi˜På¶

Ô hi˜På¶5óÉÜ

(37)

ì2 2.3.1. (˜F5På)

Ý=²Ç

G = (V, E)

2

,

J

−−→vkvl ∈ E,

†˚

o(vk, vl; G) = maxkW k : vl

Ñ¥−

W

5áõ

Ѳi

−−→vkvl

5På

,

w2

kW k

[ý¥−

W

5Å

ì2 2.3.2. (…û˝5hPå)

Ý=²Ç

G = (V, E)

2

,

J

−−→vkvl ∈ E,

†˚

o(vk, vl; G) = maxkW k : vk

Ñ¥−

W

5õ

Ѳi

−−→vkvl

5hPå

,

w2

kW k

[ý¥−

W

5Å

ìÜ 2.3.3.

Ý=²Ç

G(V, E)

2

,

cq

#V = n

/

A = [aij]1≤i,j≤n

Ñ

G(V, E)

5¹Q

ä³

,

Ij³

p z }| { AO· · ·OA = p O i=1 A = [a(p)ij ]1≤k,l≤n,

o(vk, vl; G) = aklmax{dik : i = 1, 2, · · · , n},

¥³

dij = max n p ∈ {1, 2, · · · , n − 1} : a(p)ij = 1o. „p:

ÄÑ

a(p)ij = 1

[ýæÊJÝõ

i

Ñáõ

,

Ýõ

j

Ñ

õ/˜ŏß

u

p

í˜

,

FJ

dij

[ýJÝõ

i

ÑUáõ

,

Ýõ

j

Ñõí˜2

,

˜Å

5|×

M ¢ÄÑ

o(vk, vl; G) = maxkW k : vk

Ñ¥−

W

5õ

FJ)„

o(vk, vl; G) = aklmax{dik : i = 1, 2, · · · , n}. 

(38)

ì2 2.3.4.

Ý=²Ç

G(V, E)

2

,

²i

−−→vkvl ∈ E

5hi˜På½b

K(vk, vl; G)

ì2Ñ

K(vk, vl; G) = #E(vk, vl; G) + o(vk, vl; G). ì2 2.3.5.

q

G(V, E)

ÑÝ=²Ç

,

/

Kv(vi; G) = n X j=1,j6=i {K(vi, vj; G) + K(vj, vi; G)} ,

†˚

Kv(vi, ; G)

Ñhi˜På¶2Ýõ

vi

5½b

ì2 2.3.6.

ÊÝ=²Ç

G

2

,G

5hi˜På

ä³

; OG

ì2Ñ

: OG = [okl]n×n,

w2

okl= akl  max 1≤j≤ndjk  = order(vk, vl | G). ì2 2.3.7.

ʲÇ

G = (V, E), G0 = (V, E0), G ∩ G0 = (V, E ∩ E0), G ∪ G0 = (V, E ∪ E0)

2

,V = {v1, v2, · · · , vn},

I

G, G0, G ∩ G0, G ∪ G0

5hi˜På

ä³}Ñ

EOG = [xkl]n×n,

w2

xkl = ]E(vk, vl| G) + order(vk, vl | G), EOG0 = [x 0 kl]n×n,

w2

xkl = ]E(vk, vl| G 0 ) + order(vk, vl | G 0 ), EOG∩G0 = [x 00 kl]n×n,

w2

x”kl = ]E(vk, vl| G ∩ G 0 ) + order(vk, vl | G ∩ G 0 ), EOG∪G0 = [x 0 kl]n×n,

w2

xkl = ]E(vk, vl| G ∪ G 0 ) + order(vk, vl | G ∪ G 0 ).

Ž hi˜På¶5ƶ

hi˜På¶5ƶ?âû_!…¥  ²Ï¶†D[0¶†újÞF

ZA D

IM

¶íρ

ÉʽbíËj

,

¹}J

K(vk, vl; G), Kvw(vk, vl; G)

D

K∗ v(vk, vl; G)

V¦H

I(vk, vl; G), Ivw(vk, vl; G)

D

Iv∗(vk, vl; G)



(39)

û

óÉõ„4û˝

âk…û˝¡5>\

(2007)

d-Z5ø¶}

,

/ªW½-¶ i˜¶D h

i

˜På¶5ªœ}& Ĥ

,

…Ò«n>\ ±<•D5ÙÁúA5d

,

D

…û˝Éí¶}

,

1T|ú

vd5u‡

Ô

>\d

ø û˝ñí

(

ø

)

ú½-¶5Æj¶‹ph¥

,

J®ƒ^Áý>˜i5^‹

(

ù

)

‚àZG(5½-¶

,

@àk

øø{˙2íbçä5S–1

ù û˝j¶

‚à¹Q

ä³FßÞíjÖ

,

Js_J,ó°Mv

,

w

‡¶†Ñø

xó°

½-Míõ

,

YΩibí×ü§å

,

âüB×

,

J©ibøš

v†øj

Öó>²

,

1°v«nw>˜ib

ú û˝¼˙

(

ø

)

 ¹Q

ä³’e

,

1‚à

Matlab

_Òø_Óœ¹Q

ä³5’e

, (

ù

)

ø¹Q

ä³5’eæA

M-file

f

, (

ú

)

‚à

Matlab

l½h§(5,>˜ib

, (

û

)

‚à

Matlab

}&Ÿ>˜ibDh>˜ib

, (

ü

)

‚à

Matlab

ú`Áý>˜i(íÇ

û û˝!‹

(

ø

)

Z

G(í½-¶Æ¶†Ê½-Mó°v

,

YÎw¶†

,

ªJòQ²

|

œ7í§å

,

JÁýÆvÈ

,

ª7)ƒ>˜b|ýí¼µÇ

(40)

(

ù

)

øZG(í½-¶^Ë‚àÊ

øø®ä`ç,

,

ªéç36

úÀjDÀj5ÈíÉ:4ypn

,

JZ©

è1J"óÉø…

,

1ªÊ

`ç,TX`ªè4ò5`‡ËPÇ

,

JZÓªç3^‹

Ž ±<•d

ø û˝ñí

ªœ

ISM

¶

IM

¶ i˜¶Di˜På¶ÊÁý>˜i5A^

ù û˝j¶

‚à

Matlab

bjVßÞ¹Qä³

,

1J

0.75

Ñ

§M çbM×

kCk

0.75

v

,

e[ýÝõ

i

ƒÝõ

j

5È©Qi

,

aij = 1

 ¥5

,

†[ýÝõ

i

ƒÝõ

j

5ȳ©Qi

,

¹

aij = 0



vû˝c‡ú

8

õ

(

¹

n = 8)

d’e_Ò

ú û˝¼˙

(

ø

)

;W

b’ef1ž“ѹQä³

, (

ù

)

‚à

Matlab

l|ªƒ®

ä³

, (

ú

)

vƒlWÕ¯ ªƒ®Õ¯DA}Õ¯

,

1‚à

Matlab

lÇ$¼

µb(

,

ú`

ISM

Ç

,

(

û

)

‚à

Matlab

li©! i˜Di˜På½bM

,

(

ü

)

‚à

Matlab

˙ÏWi©! i˜Di˜På5Áý>˜iÆ



,

(

ý

)

Matlab

}ú`i©!½b i˜½bDi˜På½

b5

IM

Ç

(41)

[ 2.4.1 Áý>˜i(Ç$í>˜b š…

ISM Ç IM Ç i˜Ç i˜PåÇ 1 3 0 1 0 2 1 1 1 1 3 1 0 0 0 4 3 0 0 0 5 4 0 0 0 6 3 0 0 0 7 1 1 1 1 8 2 1 1 1 9 2 1 1 1 10 5 0 0 0 11 3 0 0 0 12 4 4 4 4 13 4 1 1 1 14 10 5 5 5 15 0 1 0 0 16 2 0 0 0 17 1 0 0 0 18 1 0 0 0 19 3 0 0 0 20 2 0 0 0

(42)

*[

2.4.1

ªJõ|

,

±<•

(2006)

F_Òí

20

°¹Q

ä³’e2

,

c

ñõ–V

,

i

˜På¶Áý>˜ií^‹|7

,

wŸÑ

IM

,

yŸÑi

˜¶

,

|(u

ISM

¶

¡

5ÙÁd

ø û˝ñí

(

ø

)

‚à

Matlab

˙

,

JõW}&

IM

¶Æ¶í½æõ

(

ù

)

;W

˜Fú

IM

¶2½bZGísj¶

,

ªœ¤sj¶D

IM

5A^

(

ú

)

@àÁý>˜i5j¶

,

 ªè4ò5bDl3æ`‡ËPÇ

ù û˝j¶

uJ-Ü1V)Ÿ

IM

¶ i˜¶Di˜På¶úÁý>˜i

5

Matlab

˙xk

: (

ø

)

.Z‰Ÿ£dÝ=²Ç5,-PÉ:

,

鮼µÝõbøš

,

J

Ýõb|ÖµµÑ!Ä

,

ýkvµ5ÝõbÌ^,™ÒÝõ

(

ù

)

§pí3WíÝõJ

h × 1

5W²¾V_/

,

§p3W˝¬iíÝõ

J

h × (w − 1)

5

ä³V_/

(

ú

)

ªŸ²¦ø_Ýõ5²Ï¶†í˙

,

1ø²|íÝõBk

main temp



(

û

)

ªŸ²¦ù_Ýõ5²Ï¶†í˙

,

1ø²|íÝõBk

main temp



(

ü

)

ªŸ²¦ú_Ýõ5²Ï¶†í˙

,

ø²|5Ýõ¦±

in-3,

Ó

(ªŸ

in-3

[0¶†í˙

(

ý

)

û_J(5Ýõ

,

J

for-end

c˛ÏW

,

ÏWŸbqlD,Ýõbó

°

(43)

ú û˝¼˙

(

ø

)

²ì£dÝ=²Ç5µbD®µ5Ýõb

(

ù

)

ßÞ¹Q

ä³’ef

:

‚à

MATLAB

5

rand

ƒbNI

,

ÓœßÞ

0

D

1

5¹Q

ä³’e

,

Ó(ÏWŒu´Ñ£dÝ=²Ç5¹Q

ä

³’e

,

J

MATLAB

˙|£dÝ=²Ç5¹Q

ä³’e(

,

ú|v£dÝ=²Ç

(

ú

)

ßÞ¼µ’e²¾

L: L

Ñ

(w ∗ h) × 1

5W²¾

,

˙ÏW2

,

x

[ýÝõFÊP0íŠ?

,

w’eà-

: L = ( w z }| { 11 · · · 1 w z }| { 22 · · · 2 · · · w z }| { hh · · · h)t,

¥³

t

[ý²¾ž0

(transpose)



(

û

)

l|ªƒ®

ä³ ‚à

for-end

, if-end

j4‡i−„D

boolean

ƒbNI

,

l|ªƒ®

ä³

(

ü

)

‚à

for-if-end

j4‡i−„

,

l£dÝ=²Ç5>˜b

(

ý

)

‚à

for-end

,

l

IM

¶5½b

(

þ

)

‚à

for-end

,

l˜F5i˜¶5½b

(

ÿ

)

‚à

for-end

,

l˜F5i˜På¶5½b

( )

‚à

if-elseif-else-end

j4‡iD

switch-case-otherwise-end

j4‡

i−„

,

ªW

IM

¶Áý>˜i5Ýõ½§

(



)

‚à

if-elseif-else-end

j4‡iD

switch-case-otherwise-end

j4‡

i−„

,

ªWi˜¶Áý>˜i5Ýõ½§

(

)

‚à

if-elseif-else-end

j4‡iD

switch-case-otherwise-end

j4

‡i−„

,

ªWi˜På¶Áý>˜i5Ýõ½§

(44)

ý>˜i(5¼µÇ

û û˝!‹

(

ø

)

J

G = (V, E)

ÑL<5

n

¼£dÝ=²Ç

,

Iv(vi; G) ≤ Jv(vi; G) ≤ Kv(vi; G), ∀vi ∈ V. (

ù

)

J

G = (V, E)

ÑL<5

3

¼£dÝ=²Ç

,

†;W

IM

¶Di

˜¶

,

ªWÁý>˜iTÜ(

,

F)5Çí>˜,bó°

(

ú

)

q

G = (V, E)

ÑL<5

n

¼£dÝ=²Ç

,

J

J (vk, vl; G) ≤ 1, ∀vk, ∀vl ∈ V, (2.1)

†;W

IM

¶Di˜¶

,

ªWÁý>˜iTÜ(

,

F)5Çí>˜,

bó°

(

û

)

J

G = (V, E)

ÑL<5

2

¼£dÝ=²Ç

,

/|µL<5Ý

õíÕŸbükk

2

v

,

†;W

IM

¶ i˜¶Di˜På¶

,

ªWÁý>˜iTÜ(

,

F)5Çí>˜,bÌó°

(45)
(46)

úı j¶D¥

ø

½-¶5

Matlab

˙qlÜ1

YW½-¶5Ü

,

…û˝Êql

Matlab

˙v

,

c-Ü1VªW

:

ø l ìú¼£d¼µÇ|,µíÝõ

,

Í(â,7-Møl½b

ù 5?ù úµ5²i>˜b}Ñ

0, 1, 2, 3, 4, 5, 6, 7, 8, 9

58$íù

úµF$A5¹Q

ä³

,

Vl½b

,

?

¹

,

qlÉlùµÝõ½b5˙



ú Êù í‡T-

,

ª75?øµíqŸb}Ñ

1, 2, 3

58$íø ùµF

$A5¹Q

ä³

,

Vl½b

,

?

¹

,

qlÉløµÝõ½b5˙

û ˙ql,

,

l§å

(

âüƒ×

)

ùµ5½b

,

y§åøµ5½b

ü ìøµ

,

y;Wøƒûí¥

,

Yå§ùµDúµ5Ýõßå

ý Js_Ýõí½bó°v

,

ªø¥;WsÝõ5qŸbMí×üVql˙

,

V‹J–<

ù

½-¶Êú¼£d¼µÇ5}&¥

…û˝ðÊû˝L<ú¼£d¼µÇ5Áý>˜ií½æ

,

;Wùı½-¶5

Ü!€Dƶ†à-

:

ø ¹Q

ä³’eí

(47)

(

ø

)

Microsoft Office Excel 2007

 ¹Q

ä³í’e

1.

…˙J©øµõbÌÑúí8$

,

øuúµ

2.

*¼µÇ5|,µõ

,

â˝B¬

,

â,B-Yå/p¹Q

ä³íWD

2

3.

ʹQ

ä³2

,

YμµÇ2ó¹ísµ

,

wú@P0J©i†™p

Ñ

1,

´†™pÑ

0



(

ù

)

‚à

Matlab

_Òø_Óœ¹Q

ä³5’e

ãÊ˙f

rand pro matrix,

ª

Óœ“¨ø_¹Qä³í’e

,

w2.â

qì¼µbÑ

3

J£©µõbÑ

3



ù ø¹Q

ä³í’eæA

M-file

f

Ê

Matlab

ÏW˙‡

,

.âlø

Microsoft Office Excel 2007

F í¹Q

ä

³’ežŸp

M-file

fq

,

w¥ à-

: (

ø

)

ø¹Q

ä³ì2ø_±˚

,

à

name = [ ]



(

ù

)

Excel

í¹Q

ä³’eµ`¬Vûk䳯U

[ ]

q

(

ú

)

ì2ø_

3 × 1

í

ä³

,

z¹Q

ä³2í)UYwFʵ–}|V

,

øµ

õ̝p

1,

ùµõ̝p

2,

úµõ̝p

3



(

û

)

ø

M-file

·±æf1æk˙ç2

ú

Matlab

˙}&

(

ø

)

ãʪŸßí3˙f

main BC,

¤

˙fu}&¤¹Q

䳂à½-¶

½h§(5,>˜b

(

ù

)

3˙f

main BC

2

,

@àƒ˙

temp perm,

7¤˙ÊlW½-M

D½-M

,

1Yw×ü½h§å

(48)

(

ú

)

3˙f

main BC

2

,

@àƒ˙

BC adj,

¤˙ÊÏWíTuø

i

µD

i+1

µFßÞí¹Q

ä³R¦|V

,

1ì2ø_hí

ä³

û

output

}&

(

ø

)

lŸ>˜ibÛãÊ˙f

subcross,

¤

˙fÉ?}&¹Qä³í,

>˜ib

,

5(

,

Ê˙–)

(Command Window)

p

subcross(A),

w2

A

ѹQ

ä³HU

,

¹ªl¤¹Qä³5,>˜ib

,

Ĥ

,

‚à¤˙

fVlŸ>˜ib

(

ù

)

lh>˜ibÛ‚à3˙f

main BC,

Ê˙–)2p

main BC(A),

w2

A

ѹQ

ä³HU

,

¹ª|h>˜ib

ü `Ç

ãÊ˙f

iter BC,

¤

˙fuJ

main BC

Ñ3bYW

,

ªJl‚à

BC

½h§åU5,>˜ib

,

1ú`wÇ$

ú

i˜¶Dhi˜På¶5

Matlab

˙qlÜ1

…û

˝;W-ÞÜ1V)Ÿi˜Dhi˜På¶ùj¶Áý>˜i5

Mat-lab

˙xk

:

ø .Z‰Ÿ£dÝ=²Ç5,-PÉ:

ù §p3WíÝõJ

3×1

5W²¾

(column vector)

VŸp

,

W²¾ì2Ñ

main temp,

ÇÕ

,

§p3W˝¬íÝõJ

3×2

VŸp

,

ä³}ì2Ñ

temp left

D

temp right



ú ªŸ²¦ø_Ýõ5²Ï¶†í˙

,

1øw²|5Ýõ0k

main temp



(49)

û ªŸ²¦ù_Ýõ5²Ï¶†í˙

,

1øw²|5Ýõ0k

main temp,

Ä

ÑF}&5¼µÇÑ£d¼µÇ

,

Ĥ²|5Ýõ.}Dø_²|íÝõ°ø

µ

ü ªŸ²|ú_Ýõ5²Ï¶†í˙

,

ø²|5Ýõì2Ñ

in 3,

Ó( ªŸÝ

õ

in 3

5[0¶†í˙

ý ;W

main temp,main left

D

main right

VªŸúÇ˙

û

i˜¶Dhi˜På¶5

Matlab

˙ÏW¥

…û

˝;Wi˜Dhi˜På¶5ƶ†

,

‚à

Matlab

,ñªŸÏW˙



,

1Y-¥

:

ø ßÞ¹Q

ä³’ef

:

‚à

Matlab

5

rand

ƒbNI

,

ÓœßÞ

3

µ

,

©µ

3

_

Ýõ

0

D

1

5¹Q

ä³’e

ù ßÞ¼µ’e²¾

L: L

ÑW²¾

,

˙ÏW2x[ýÝõFÊP0íŠ?

,

w

’e$Ñ

L = (111222333)t,

¥³

t

[ý²¾ž0

(transpose)



ú l|ªƒ®

ä³

:

‚à

for-end

, if-end

j4‡i−„D

boolean

ƒbN

I

,

l|ªƒ®

ä³

û ‚à

for-if-end

j4‡i−„

,

l£dÝ=²Ç5>˜b

ü ‚à

for-end

,

l˜F5i˜¶5½b

(50)

ý ‚à

for-end

,

l˜F5i˜På¶5½b

þ à

if-elseif-else-end

j4‡iD

switch-case-otherwise-end

j4‡i−„

,

ªW

i˜¶Áý>˜i5Ýõ½§

ÿ ‚à

if-elseif-else-end

j4‡iD

switch-case-otherwise-end

j4‡i−„

,

ª

Wi˜På¶Áý>˜i5Ýõ½§

(51)
(52)

ûı !‹Dn

ø

úÁý>˜ij¶5A^ªœ

…û

˝;W&½æ

,

ªWú¼£d²Ç5Áý>˜i}&

,

Ê°øµ©_Ýõ

íqŸbîó°í‘K-

,

êÛ

676 × 3 = 2028

_ú¼£d²Ç

,

%¬cÜ£¦Ñ

|-Þ

6

_ìÜ

: ìÜ 4.1.1.

J

G = (V, E)

ÑL<ú¼£dÝ=²Ç

,

ÊùµDúµÝõ5

qŸbîó°í‘K-

,

êÛu

676

_vGíÇ

,

w2

É

10

_ÇÊÁý>˜i

TÜ,

,

½-¶5A^iki˜¶

,

/i˜¶5A^ikhi˜På¶

„p:

ÊL<ú¼£dÝ=²Ç

G = (V, E)

2

,

ùµDúµÝõ5qŸ

bîó°-

,

u

26 × 26 = 676

_Ç ¢ÄÑN¬½-¶

,

õÒl

676

_Çí!‹

,

D-É[

: Jv(vi, G) ≤ Kv(vi, G), ∀vi ∈ V,

ª)ÊÁý>˜iíTÜ,

,

½-¶í>˜b|ý

,

wŸui˜¶

,

|ÖÑhi˜

På¶



ìÜ 4.1.2.

擆

4.1.1

5‘K-

,

;W½-¶ i˜¶Dhi˜På¶

,

ªWÁ

ý>˜iTÜ(

,

êÛ

10

_ÇÊÁý>˜iTÜ,

,

½-¶5A^ikhi˜På

,

/hi˜På¶5A^iki˜¶

„p:

ÊL<ú¼£dÝ=²Ç

G = (V, E)

2

,

ùµDúµÝõ5qŸ

bîó°-

,

u

26 × 26 = 676

_Ç ¢ÄÑN¬½-¶

,

õÒl

676

_Çí!‹

,

D-É[

:

(53)

ª)ÊÁý>˜iíTÜ,

,

½-¶í>˜b|ý

,

wŸuhi˜På¶

,

|ÖÑi

˜¶



ìÜ 4.1.3.

擆

4.1.1

5‘K-

,

;W½-¶ i˜¶Dhi˜På¶

,

ªWÁ

ý>˜iTÜ(

,

êÛ

208

_ÇÊÁý>˜iTÜ,

,

½-¶5A^iki˜¶5A

^

,

/i˜¶5A^Dhi˜På¶5A^ó°

„p:

ÊL<ú¼£dÝ=²Ç

G = (V, E)

2

,

ùµDúµÝõ5qŸ

bîó°-

,

u

26 × 26 = 676

_Ç ¢ÄÑN¬½-¶

,

õÒl

676

_Çí!‹

,

D-É[

: Jv(vi, G) = Kv(vi, G), ∀vi ∈ V,

ª)ÊÁý>˜iíTÜ,

,

½-¶í>˜b|ý

,

i˜¶Dhi˜På¶5>˜

bó°

 ìÜ 4.1.4.

擆

4.1.1

5‘K-

,

;W½-¶ i˜¶Dhi˜På¶

,

ªWÁ

ý>˜iTÜ(

,

êÛ

2

_ÇÊÁý>˜iTÜ,

,

½-¶5A^Di˜¶5A^ó

°

,

/s6Ìikhi˜På¶5A^

„p:

ÊL<ú¼£dÝ=²Ç

G = (V, E)

2

,

ùµDúµÝõ5qŸ

bîó°-

,

u

26 × 26 = 676

_Ç ¢ÄÑN¬½-¶

,

õÒl

676

_Çí!‹

,

D-É[

:

Jv(vi, G) ≤ Kv(vi, G), ∀vi ∈ V,

ª)ÊÁý>˜iíTÜ,

,

½-¶Di˜¶í,>˜bó°

,

hi˜På¶í,

>˜b|Ö



ìÜ 4.1.5.

擆

4.1.1

5‘K-

,

;W½-¶ i˜¶Dhi˜På¶

,

ªWÁ

(54)

„p:

ÊL<ú¼£dÝ=²Ç

G = (V, E)

2

,

ùµDúµÝõ5qŸ

bîó°-

,

u

26 × 26 = 676

_Ç ¢ÄÑN¬½-¶

,

õÒl

676

_Çí!‹

,

D-É[

: Kv(vi, G) = Jv(vi, G), ∀vi ∈ V,

ª)ÊÁý>˜iíTÜ,

,

ú6í>˜i,bó°

 ìÜ 4.1.6.

擆

4.1.1

5‘K-

,

½-¶Áý>˜i(5ÇÑ|7Ç

„p:

Êù úµÝõ5qŸbÑ

1



2

C

3

íú¼£d¼µÇu

676



,

½-¶Áý>˜i(íÇ

,

%Møªú

,

1

ªø¥ð„¥<ÇÑ|7Ç

,

¶}Áý>˜

i5ÇÌcË“



ù

õWð„

‚à

Matlab

˙ÏW(êÛJ-õW

,

zp½-¶ i˜¶Dhi˜På¶

,

ÊÁý>˜iTÜ,

,

w>˜ibí8$

zpW 4.2.1.

Ç

4.2.1 − 4.2.4

Ñø

3

¼£d¼µÇD½-¶ i˜¶Dhi˜P

嶪WÁý>˜i(íÇ

 

Ç

4.2.1 3

¼£d¼µÇ

Ç

4.2.2

½-¶5Ç

參考文獻

相關文件

In particular, we present a linear-time algorithm for the k-tuple total domination problem for graphs in which each block is a clique, a cycle or a complete bipartite graph,

Breu and Kirk- patrick [35] (see [4]) improved this by giving O(nm 2 )-time algorithms for the domination and the total domination problems and an O(n 2.376 )-time algorithm for

Robinson Crusoe is an Englishman from the 1) t_______ of York in the seventeenth century, the youngest son of a merchant of German origin. This trip is financially successful,

Students are asked to collect information (including materials from books, pamphlet from Environmental Protection Department...etc.) of the possible effects of pollution on our

Particularly, combining the numerical results of the two papers, we may obtain such a conclusion that the merit function method based on ϕ p has a better a global convergence and

If the best number of degrees of freedom for pure error can be specified, we might use some standard optimality criterion to obtain an optimal design for the given model, and

In the following we prove some important inequalities of vector norms and matrix norms... We define backward and forward errors in

We will give a quasi-spectral characterization of a connected bipartite weighted 2-punctually distance-regular graph whose halved graphs are distance-regular.. In the case the