• 沒有找到結果。

Generalized synchronization of chaotic systems by pure error dynamics and elaborate Lyapunov function

N/A
N/A
Protected

Academic year: 2021

Share "Generalized synchronization of chaotic systems by pure error dynamics and elaborate Lyapunov function"

Copied!
12
0
0

加載中.... (立即查看全文)

全文

(1)

Contents lists available at

ScienceDirect

Nonlinear Analysis

journal homepage:

www.elsevier.com/locate/na

Generalized synchronization of chaotic systems by pure error dynamics

and elaborate Lyapunov function

Zheng-Ming Ge

, Ching-Ming Chang

Department of Mechanical Engineering, National Chiao Tung University, Hsinchu, Taiwan, ROC

a r t i c l e

i n f o

Article history: Received 4 December 2007 Accepted 6 April 2009 MSC: 34C15 34C28 37D45 Keywords: Chaos Generalized synchronization Double Mathieu system Lyapunov function Lyapunov direct method

a b s t r a c t

The generalized synchronization is studied by applying pure error dynamics and elaborate

Lyapunov function in this paper. Generalized synchronization can be obtained by pure error

dynamics without auxiliary numerical simulation, instead of current mixed error dynamics

in which master state variables and slave state variables are presented. The elaborate

Lyapunov function is applied rather than the current plain square sum Lyapunov function,

deeply weakening the power of Lyapunov direct method. The scheme is successfully

applied to both autonomous and nonautonomous double Mathieu systems with numerical

simulations.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Chaos synchronization has been applied in secure communication [

1

,

2

], biological systems [

3

,

4

], and many other

fields [

5–25

]. One of the intricate types of chaos synchronization is generalized synchronization, which has been extensively

investigated recently [

26–33

]. The generalized synchronization is studied by applying pure error dynamics and elaborate

Lyapunov function in this paper.

The pure error dynamics can be analyzed theoretically without auxiliary numerical simulation, whereas the aid of

additional numerical simulation is unavoidable for current mixed error dynamics in which master state variables and slave

state variables are presented, while their maximum values must be determined by simulation [

34–38

]. Besides, the elaborate

Lyapunov function is applied rather than current plain square sum Lyapunov function, V

(

e

) =

1

2

e

T

e, which is currently

used for convenience. However, the Lyapunov function can be chosen in a variety of forms for different systems. Restricting

Lyapunov function to square sum makes a long river brook-like, and greatly weakens the power of Lyapunov direct method.

Based on the Lyapunov direct method [

39

], generalized synchronization is achieved and a systematic method of designing

Lyapunov function is proposed. The technique is successfully applied to both autonomous and nonautonomous double

Mathieu systems. This paper is organized as follows. In Section

2

, the method of designing Lyapunov function is presented,

Corresponding address: Department of Mechanical Engineering, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 300, Taiwan, ROC. Tel.: +886 3 5712121 55119; fax: +886 3 5720634.

E-mail address:zmg@cc.nctu.edu.tw(Z.-M. Ge).

0362-546X/$ – see front matter©2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.na.2009.04.020

(2)

and generalized synchronization is obtained. Section

3

contains the examples of autonomous and nonautonomous double

Mathieu systems, and numerical simulations show the feasibility of the proposed method. Finally, the conclusions are

drawn.

2. Design of Lyapunov function

Consider the master and slave nonlinear dynamic systems described by

˙

x

=

f

(

t

,

x

)

(2.1)

˙

y

=

f

(

t

,

y

) +

u

(

t

,

x

,

y

)

(2.2)

where x

,

y

R

n

are master and slave state vectors, f

:

R

+

×R

n

R

n

is a nonlinear vector function, and u

:

R

+

×R

n

×R

n

R

n

is controller vector.

Generalized synchronization means that there is a functional relation y

=

g

(

t

,

x

)

between master and slave states as

time goes to infinity, where g

:

R

+

×

R

n

R

n

is a continuously differentiable vector function. Define e

=

y

g

(

t

,

x

)

as the

generalized synchronization error vector, and the error dynamics can be obtained:

˙

e

= ˙

y

− ˙

g

(

t

,

x

)

= ˙

y

g

(

t

,

x

)

x

x

˙

g

(

t

,

x

)

t

=

f

(

t

,

y

) −

g

(

t

,

x

)

x

f

(

t

,

x

) −

g

(

t

,

x

)

t

+

u

(

t

,

x

,

y

).

(2.3)

Based on Lyapunov direct method [

39

], the scheme of generalized synchronization and the procedure of designing Lyapunov

function are described as follows:

Step 1. Construct a Lyapunov function

V

(

t

,

e

) =

1

2

e

T

3

(

t

)

e

=

1

2

λ

11

(

t

)

e

2 1

+

1

2

λ

22

(

t

)

e

2 2

+ · · · +

1

2

λ

nn

(

t

)

e

2 n

(2.4)

where

3

(

t

) = [λ

ii

(

t

)] ∈

R

n×n

is an unknown continuously differentiable positive definite diagonal matrix to be designed.

Its derivative is

˙

V

(

t

,

e

) = ˙

e

T

3

(

t

)

e

+

1

2

e

T

3

˙

(

t

)

e

=

λ

11

(

t

)

e

1

˙

e

1

+

λ

22

(

t

)

e

2

˙

e

2

+ · · · +

λ

nn

(

t

)

e

n

˙

e

n

+

1

2

˙

λ

11

(

t

)

e

21

+

1

2

˙

λ

22

(

t

)

e

22

+ · · · +

1

2

˙

λ

nn

(

t

)

e

2n

.

(2.5)

Step 2. Eq.

(2.5)

can be rewritten in the following form:

˙

V

(

t

,

e

) =

G

1

11

, ˙λ

11

)

e

21

+

G

2

22

, ˙λ

22

)

e

22

+ · · · +

G

n

nn

, ˙λ

nn

)

e

2n

+ [H

1

11

, . . . , λ

nn

,

x

1

, . . . ,

x

n

,

y

1

, . . . ,

y

n

,

t

) + λ

11

u

1

]e

1

+ [H

2

11

, . . . , λ

nn

,

x

1

, . . . ,

x

n

,

y

1

, . . . ,

y

n

,

t

) + λ

22

u

2

]e

2

+ · · · + [H

n

11

, . . . , λ

nn

,

x

1

, . . . ,

x

n

,

y

1

, . . . ,

y

n

,

t

) + λ

nn

u

n

]e

n

(2.6)

where G

i

ii

, ˙λ

ii

)

and H

i

11

, . . . , λ

nn

,

x

1

, . . . ,

x

n

,

y

1

, . . . ,

y

n

,

t

) (

i

=

1

,

2

, . . . ,

n

)

are continuous differentiable functions,

u

i

(

i

=

1

,

2

, . . . ,

n

)

are controllers to be determined.

Step 3. Eq.

(2.6)

may be classified as two general forms: (1) All G

i

ii

, ˙λ

ii

)

depend on

λ

ii

(

t

)

and

λ

˙

ii

(

t

)

, (2) Some of G

j

jj

, ˙λ

jj

)

depend on

λ

jj

(

t

)

and

λ

˙

jj

(

t

)

, the remaining G

k

kk

, ˙λ

kk

)

depend only on

λ

˙

kk

(

t

)

.

Form (1) All G

i

ii

, ˙λ

ii

)

depend on

λ

ii

(

t

)

and

λ

˙

ii

(

t

)

.

Step 4. Design the controllers u

i

such that

H

i

11

, . . . , λ

nn

,

x

1

, . . . ,

x

n

,

y

1

, . . . ,

y

n

,

t

) + λ

ii

u

i

=

0

(

i

=

1

,

2

, . . . ,

n

)

(2.7)

i.e., current mixed error dynamics has been replaced by pure error dynamics. By Eq.

(2.7)

, we design the controllers u

i

such

that

λ

ii

(

i

=

1

,

2

, . . . ,

n

)

are linear function of each other with positive coefficients.

Step 5. Design

λ

11

(

t

), λ

22

(

t

), . . . , λ

nn

(

t

)

such that

(3)

where

λ

m ii

,

λ

M ii

are positive constants, and

∀t

0

,

G

i

ii

, ˙λ

ii

) <

0

(

i

=

1

,

2

, . . . ,

n

)

(2.9)

then the Lyapunov function can be obtained and the generalized synchronization is achieved according to the Lyapunov

direct method.

Form (2) Some of G

j

jj

, ˙λ

jj

)

depend on

λ

jj

(

t

)

and

λ

˙

jj

(

t

)

, and the remaining G

k

kk

, ˙λ

kk

)

depend only on

λ

˙

kk

(

t

)

.

Step 4. Assume

∀k

, λ

kk

(

t

) =

1

(2.10)

∀k

,

H

k

11

, . . . , λ

nn

,

x

1

, . . . ,

x

n

,

y

1

, . . . ,

y

n

,

t

) + λ

kk

(

t

)

u

k

= −e

k

(2.11)

∀j

,

H

j

11

, . . . , λ

nn

,

x

1

, . . . ,

x

n

,

y

1

, . . . ,

y

n

,

t

) + λ

jj

(

t

)

u

j

=

0

(2.12)

i.e., current mixed error dynamics has been replaced by pure error dynamics, and appropriately design the controllers

u

i

(

i

=

1

,

2

, . . . ,

n

)

and

λ

jj

(

t

)

such that

∀t

0

,

0

< λ

mjj

λ

jj

(

t

) ≤ λ

Mjj

(2.13)

where

λ

m jj

,

λ

M jj

are positive constants, and

∀t

0

,

G

j

jj

, ˙λ

jj

) <

0

(2.14)

then the Lyapunov function can be obtained and the generalized synchronization is achieved according to the Lyapunov

direct method.

3. Generalized synchronization of double Mathieu systems

In this section, the functional relation between master and slave states is y

i

=

g

i

(

t

,

x

i

) = α(

t

)

x

i

+

β(

t

) (

i

=

1

,

2

, . . . ,

n

)

.

To demonstrate the use of the proposed method, two examples of autonomous and nonautonomous double Mathieu systems

are presented.

3.1. Regular and chaotic dynamics of autonomous and nonautonomous double Mathieu systems

The nonlinear damped Mathieu system is [

40

,

41

]

˙

x

1

=

x

2

˙

x

2

= −a

(

1

+

sin

ω

t

)

x

1

(

1

+

sin

ω

t

)

x

31

ax

2

.

(3.1)

An autonomous double Mathieu system can be constructed by mutual linear coupling of two Mathieu systems:

˙

x

1

=

x

2

˙

x

2

= −a

(

1

+

x

4

)

x

1

(

1

+

x

4

)

x

31

ax

2

+

bx

3

˙

x

3

=

x

4

˙

x

4

= −

(

1

+

x

2

)

x

3

a

(

1

+

x

2

)

x

33

ax

4

+

bx

1

.

(3.2)

The parameters in simulation are a

=

0

.

5

,

b

=

1–1

.

254

,

and the initial condition is x

1

(

0

) =

0

.

1

,

x

2

(

0

) =

0

.

1

,

x

3

(

0

) =

0

.

2

,

x

4

(

0

) =

0

.

2. The phase portraits, Poincaré maps, bifurcation diagram, and Lyapunov exponents are shown in

Fig. 1

. It

can be observed that the motion is period 1 for b

=

1

.

1, period 4 for b

=

1

.

243, and period 8 for b

=

1

.

246. For b

=

1

.

24,

the motion is chaotic.

A nonautonomous double Mathieu system can also be constructed by mutual linear coupling of two Mathieu systems:

˙

x

1

=

x

2

˙

x

2

= −a

(

1

+

sin

ω

t

)

x

1

(

1

+

sin

ω

t

)

x

31

ax

2

+

bx

3

˙

x

3

=

x

4

˙

x

4

= −

(

1

+

sin

ω

t

)

x

3

a

(

1

+

sin

ω

t

)

x

33

ax

4

+

bx

1

.

(3.3)

The parameters in simulation are a

=

0

.

5

,

b

=

0

.

9–1

, ω =

1

,

and the initial condition is x

1

(

0

) =

0

.

1

,

x

2

(

0

) =

0

.

1

,

x

3

(

0

) =

0

.

2

,

x

4

(

0

) =

0

.

2. The phase portraits, Poincaré maps, bifurcation diagram, and Lyapunov exponents are shown in

Fig. 2

. It

can be observed that the motion is period 1 for b

=

0

.

9, period 2 for b

=

0

.

93, and period 4 for b

=

0

.

934. For b

=

1, the

motion is chaotic.

(4)

1 0.5 0 x2 -0.5 -1 x2 0 0.5 x1 x1 1 1 0.5 0 -0.5 -1.5 -1 -0.5 0 0.5 1 1.5 x2 x1 1 0.5 0 -0.5 -1.5 -1 x2 x1 x1 1 0.5 0 -0.5 -1.5 -1 -0.5 1.4 1.3 1.2 1.1 1 0.9 0.8 0.7 0.6 0.5 0 0.5 1 1.5 1 1.05 1.1 1.15 b 1.2 1.254 0 -0.1 -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8 -0.9 1 1.05 1.1 b 1.15 1.2 1.254 0.1 -1 L y apuno v e xponents

a

b

c

-0.5 0 0.5 1 1.5

Fig. 1. (a) Phase portraits and Poincaré maps (b) Bifurcation diagram (c) Lyapunov exponents for autonomous double Mathieu system.

3.2. Generalized synchronization of autonomous double Mathieu systems

The master and slave autonomous double Mathieu systems can be described by

˙

x

1

=

x

2

˙

x

2

= −a

(

1

+

x

4

)

x

1

(

1

+

x

4

)

x

31

ax

2

+

bx

3

˙

x

3

=

x

4

˙

x

4

= −

(

1

+

x

2

)

x

3

a

(

1

+

x

2

)

x

33

ax

4

+

bx

1

(3.4)

(5)

x1 x2 L y apuno v e xponents

a

b

c

0.1 0.05 0 -0.05 -0.1 x1 x2 x2 0.2 0.1 0 -0.1 -0.2 x1 x1 x1 x2 5 0 -5 -4 -2 0 2 4 0.9 0.91 0.92 0.93 0.94 0.95 b 0.96 0.97 0.98 0.99 1 0.9 0.91 0.92 0.93 0.94 0.95 b 0.96 0.97 0.98 0.99 1 0.2 0.1 0 -0.1 -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 0 0.1 0.2 0.3 0.4 -0.4 -0.3 -0.2 -0.1 0 0.2 0.1 0 -0.1 -0.2 -0.4 -0.3 -0.2 -0.1 0 2 1.5 1 0.5 0 -0.5 -1 -1.5 -2

Fig. 2. (a) Phase portraits and Poincaré maps (b) Bifurcation diagram (c) Lyapunov exponents for nonautonomous double Mathieu system.

˙

y

1

=

y

2

+

u

1

˙

y

2

= −a

(

1

+

y

4

)

y

1

(

1

+

y

4

)

y

31

ay

2

+

by

3

+

u

2

˙

y

3

=

y

4

+

u

3

˙

y

4

= −

(

1

+

y

2

)

y

3

a

(

1

+

y

2

)

y

33

ay

4

+

by

1

+

u

4

.

(3.5)

The parameters in simulation are a

=

0

.

5, b

=

1

.

24, and the initial condition is x

1

(

0

) =

0

.

1, x

2

(

0

) =

0

.

1, x

3

(

0

) =

0

.

2,

x

4

(

0

) =

0

.

2, y

1

(

0

) =

0

.

3, y

2

(

0

) =

0

.

3, y

3

(

0

) =

0

.

4, y

4

(

0

) =

0

.

4.

Let e

i

=

y

i

α(

t

)

x

i

β(

t

) (

i

=

1

, . . . ,

4

)

and subtract Eq.

(3.4)

from Eq.

(3.5)

, then the error dynamics can be

obtained:

(6)

˙

e

1

=

e

2

− ˙

α(

t

)

x

1

+

β(

t

) − ˙β(

t

) +

u

1

˙

e

2

= −ae

1

ae

2

+

be

3

a

(

y

1

y

4

α(

t

)

x

1

x

4

) − [(

1

+

y

4

)

y

31

α(

t

)(

1

+

x

4

)

x

31

]

− ˙

α(

t

)

x

2

+

(

b

2a

)β(

t

) − ˙β(

t

) +

u

2

˙

e

3

=

e

4

− ˙

α(

t

)

x

3

+

β(

t

) − ˙β(

t

) +

u

3

˙

e

4

= −e

3

ae

4

+

be

1

(

y

2

y

3

α(

t

)

x

2

x

3

) −

a[

(

1

+

y

2

)

y

33

α(

t

)(

1

+

x

2

)

x

33

]

− ˙

α(

t

)

x

4

+

(

b

a

1

)β(

t

) − ˙β(

t

) +

u

4

.

(3.6)

Step 1. Construct a Lyapunov function

V

(

t

,

e

) =

1

2

e

T

3

(

t

)

e

=

1

2

λ

11

(

t

)

e

2 1

+

1

2

λ

22

(

t

)

e

2 2

+

1

2

λ

33

(

t

)

e

2 3

+

1

2

λ

44

(

t

)

e

2 4

.

(3.7)

Its derivative is

˙

V

(

t

,

e

) =

1

2

˙

λ

11

(

t

)

e

21

+

λ

11

(

t

)

e

1

˙

e

1

+

1

2

˙

λ

22

(

t

)

e

22

+

λ

22

(

t

)

e

2

˙

e

2

+

1

2

˙

λ

33

(

t

)

e

23

+

λ

33

(

t

)

e

3

e

˙

3

+

1

2

˙

λ

44

(

t

)

e

24

+

λ

44

(

t

)

e

4

e

˙

4

.

(3.8)

Step 2. Eq.

(3.8)

can be rewritten in the following form

˙

V

(

t

,

e

) =

G

1

11

, ˙λ

11

)

e

21

+

G

2

22

, ˙λ

22

)

e

22

+

G

3

33

, ˙λ

33

)

e

32

+

G

4

44

, ˙λ

44

)

e

24

+ [H

1

11

, . . . , λ

44

,

x

1

, . . . ,

x

4

,

y

1

, . . . ,

y

4

,

t

) + λ

11

u

1

]e

1

+ [H

2

11

, . . . , λ

44

,

x

1

, . . . ,

x

4

,

y

1

, . . . ,

y

4

,

t

) + λ

22

u

2

]e

2

+ [H

3

11

, . . . , λ

44

,

x

1

, . . . ,

x

4

,

y

1

, . . . ,

y

4

,

t

) + λ

33

u

3

]e

3

+ [H

4

11

, . . . , λ

44

,

x

1

, . . . ,

x

4

,

y

1

, . . . ,

y

4

,

t

) + λ

44

u

4

]e

4

(3.9)

where

G

1

11

, ˙λ

11

) =

1

2

˙

λ

11

(

t

) − λ

11

(

t

)

G

2

22

, ˙λ

22

) =

1

2

˙

λ

22

(

t

) −

a

λ

22

(

t

)

G

3

33

, ˙λ

33

) =

1

2

˙

λ

33

(

t

) − λ

33

(

t

)

G

4

44

, ˙λ

44

) =

1

2

˙

λ

44

(

t

) −

a

λ

44

(

t

)

H

1

11

, . . . ,

t

) = λ

11

(

t

)[− ˙α(

t

)

x

1

+

β(

t

) − ˙β(

t

) +

e

1

] +

b

λ

44

(

t

)

e

4

H

2

11

, . . . ,

t

) = λ

11

(

t

)

e

1

+

λ

22

(

t

)[−

ae

1

a

(

y

4

y

1

α(

t

)

x

4

x

1

) − ((

1

+

y

4

)

y

13

α(

t

)(

1

+

x

4

)

x

31

)

− ˙

α(

t

)

x

2

+

(

b

2a

)β(

t

) − ˙β(

t

)]

H

3

11

, . . . ,

t

) =

b

λ

22

(

t

)

e

2

+

λ

33

(

t

)[− ˙α(

t

)

x

3

+

β(

t

) − ˙β(

t

) +

e

3

]

H

4

11

, . . . ,

t

) = λ

33

(

t

)

e

3

+

λ

44

(

t

)[−

e

3

(

y

2

y

3

α(

t

)

x

2

x

3

) −

a

((

1

+

y

2

)

y

33

α(

t

)(

1

+

x

2

)

x

33

)

− ˙

α(

t

)

x

4

+

(

b

a

1

)β(

t

) − ˙β(

t

)].

(3.10)

Step 3. Since all G

i

ii

, ˙λ

ii

)

depend on

λ

ii

(

t

)

and

λ

˙

ii

(

t

) (

i

=

1

, . . . ,

4

)

, Eq.

(3.9)

can be classified as form (1).

Step 4. Design the controllers

u

1

= −y

1

by

4

+

(α(

t

) + ˙α(

t

))

x

1

+

b

α(

t

)

x

4

+

b

β(

t

) + ˙β(

t

)

u

2

=

a

(

y

1

y

4

α(

t

)

x

1

x

4

) + (

1

+

y

4

)

y

31

α(

t

)(

1

+

x

4

)

x

31

+ ˙

α(

t

)

x

2

(

b

2a

)β(

t

) + ˙β(

t

)

u

3

= −by

2

y

3

+

(α(

t

) + ˙α(

t

))

x

3

+

b

α(

t

)

x

2

+

b

β(

t

) + ˙β(

t

)

u

4

=

y

2

y

3

α(

t

)

x

2

x

3

+

a

(

1

+

y

2

)

y

33

α(

t

)(

1

+

x

2

)

x

33

+



1

1

a



y

3



1

1

a



α(

t

)

x

3

+ ˙

α(

t

)

x

4



b

a

1

a



β(

t

) + ˙β(

t

)

(3.11)

(7)

such that

H

i

11

, . . . , λ

44

,

x

1

, . . . ,

x

4

,

y

1

, . . . ,

y

4

,

t

) + λ

ii

(

t

)

u

i

=

0

(

i

=

1

, . . . ,

4

)

(3.12)

and

λ

ii

(

i

=

1

, . . . ,

4

)

are linear function of each other with positive coefficients:

λ

11

(

t

) = λ

44

(

t

)

λ

22

(

t

) =

1

a

λ

11

(

t

)

λ

33

(

t

) =

1

a

λ

11

(

t

).

(3.13)

Now, the mixed error dynamics is replaced by pure error dynamics:

˙

V

(

t

,

e

) =

G

1

11

, ˙λ

11

)

e

21

+

G

2

22

, ˙λ

22

)

e

22

+

G

3

33

, ˙λ

33

)

e

23

+

G

4

44

, ˙λ

44

)

e

24

.

(3.14)

Step 5. Design

λ

11

(

t

) =

1

1

+

e

t

λ

22

(

t

) =

1

a

(

1

+

e

t

)

λ

33

(

t

) =

1

a

(

1

+

e

t

)

λ

44

(

t

) =

1

1

+

e

t

(3.15)

such that

∀t

0

,

0

< λ

m11

(

t

) =

1

2

λ

11

(

t

) ≤ λ

M11

(

t

) =

1

∀t

0

,

0

< λ

m22

(

t

) =

1

2a

λ

22

(

t

) ≤ λ

M22

(

t

) =

1

a

∀t

0

,

0

< λ

m33

(

t

) =

1

2a

λ

33

(

t

) ≤ λ

M33

(

t

) =

1

a

∀t

0

,

0

< λ

m44

(

t

) =

1

2

λ

44

(

t

) ≤ λ

M44

(

t

) =

1

(3.16)

∀t

0

,

G

1

11

, ˙λ

11

) =

1

2

˙

λ

11

(

t

) − λ

11

(

t

)

=

2

e

t

2

(

1

+

e

t

)

2

<

0

∀t

0

,

G

2

22

, ˙λ

22

) =

1

2

˙

λ

22

(

t

) −

a

λ

22

(

t

)

=

2a

+

(

1

2a

)

e

t

2a

(

1

+

e

t

)

2

=

1

(

1

+

e

t

)

2

<

0

(∵

a

=

0

.

5 in simulation

)

∀t

0

,

G

3

33

, ˙λ

33

) =

1

2

˙

λ

33

(

t

) − λ

33

(

t

)

=

2

e

t

2a

(

1

+

e

t

)

2

=

2

e

t

(

1

+

e

t

)

2

<

0

(∵

a

=

0

.

5 in simulation

)

∀t

0

,

G

4

44

, ˙λ

44

) =

1

2

˙

λ

44

(

t

) − λ

44

(

t

)

=

2a

+

(

1

2a

)

e

t

2

(

1

+

e

t

)

2

=

1

2

(

1

+

e

t

)

2

<

0

(

a

=

0

.

5 in simulation

)

(3.17)

(8)

x2 x3 y1 y3 e1 x4 x4 1 0.5 0 -0.5 -1 -1.5 x1 -0.5 0 0.5 1 1.5 x1 x2 x3 -0.5 0 0.5 1 1.5 x1 1 0.5 0 -0.5 -1.5 -1 1 0.5 0 -0.5 -1.5 -1 x2 x4 -0.5 0 0.5 1 1.5 x3 -0.5 0 0.5 1 1.5 2 1 0 -1 -2 y2 2 1 0 -1 -2 y4 2 1 0 -1 -2 2 1 0 -1 -2 0 -0.5 -1 0 5 10 15 20 25 30 35 40 45 50 e2 0 -0.5 -1 0 5 10 15 20 25 30 35 40 45 50 e3 0 -0.5 -1 0 5 10 15 20 25 30 35 40 45 50 e4 0 -0.5 -1 0 5 10 15 20 25 t 30 35 40 45 50

a

b

c

1 1.5 0.5 0 -0.5 -2 -1 0 1 -0.5 0 0.5 1 1.5 -2 -1 0 1 -2 -1 0 1

Fig. 3. (a) Phase portraits of master system (b) Phase portraits of xito yi

(

i

=

1

, . . . ,

4

)

when generalized synchronization is obtained (c) Time history of

errors.

then the Lyapunov function can be obtained

V

(

t

,

e

) =

1

2

(

1

+

e

t

)

e

2 1

+

1

2a

(

1

+

e

t

)

e

2 2

+

1

2a

(

1

+

e

t

)

e

2 3

+

1

2

(

1

+

e

t

)

e

2 4

(3.18)

and

˙

V

(

t

,

e

) = −

2

+

e

t

2

(

1

+

e

t

)

2

e

2 1

1

(

1

+

e

t

)

2

e

2 2

2

+

e

t

(

1

+

e

t

)

2

e

2 3

1

2

(

1

+

e

t

)

2

e

2 4

.

(3.19)

(9)

x2 x4 x1 5 10 5 0 -5 -10 x4 x3 10 5 0 -5 -10 0 -5 e1 0 -0.5 -1 0 5 10 15 20 25 30 35 40 45 50 e2 0 -0.5 -1 0 5 10 15 20 25 30 35 40 45 50 e3 0 -0.5 -1 0 5 10 15 20 25 30 35 40 45 50 e4 0 -0.5 -1 t

a

b

c

-4 -2 0 2 4 x1 x2 x2 -4 -2 0 2 4 y1 x1 -4 -2 0 2 4 x3 -4 -5 0 5 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4 y3 x3 x4 -4 -2 0 2 4 y4 -4 -10 -5 0 5 10 -2 0 2 4 y2 -4 -5 0 5 -2 0 2 4 -4 -2 0 2 4 0 5 10 15 20 25 30 35 40 45 50

Fig. 4. (a) Phase portraits of master system (b) Phase portraits of xito yi

(

i

=

1

, . . . ,

4

)

when generalized synchronization is obtained (c) Time history

of errors.

Since Lyapunov global asymptotical stability theorem is satisfied, the global generalized synchronization is achieved.

α(

t

) =

sin

ω

t,

β(

t

) =

cos

ω

t are chosen in simulation, and the results are shown in

Fig. 3

.

3.3. Generalized synchronization of nonautonomous double Mathieu systems

(10)

˙

x

1

=

x

2

˙

x

2

= −a

(

1

+

sin

ω

t

)

x

1

(

1

+

sin

ω

t

)

x

31

ax

2

+

bx

3

˙

x

3

=

x

4

˙

x

4

= −

(

1

+

sin

ω

t

)

x

3

a

(

1

+

sin

ω

t

)

x

33

ax

4

+

bx

1

(3.20)

˙

y

1

=

y

2

+

u

1

˙

y

2

= −a

(

1

+

sin

ω

t

)

y

1

(

1

+

sin

ω

t

)

y

31

ay

2

+

by

3

+

u

2

˙

y

3

=

y

4

+

u

3

˙

y

4

= −

(

1

+

sin

ω

t

)

y

3

a

(

1

+

sin

ω

t

)

y

33

ay

4

+

by

1

+

u

4

.

(3.21)

The parameters in simulation are a

=

0

.

5, b

=

1,

ω =

1, and the initial condition is x

1

(

0

) =

0

.

1, x

2

(

0

) =

0

.

1, x

3

(

0

) =

0

.

2,

x

4

(

0

) =

0

.

2, y

1

(

0

) =

0

.

3, y

2

(

0

) =

0

.

3, y

3

(

0

) =

0

.

4, y

4

(

0

) =

0

.

4.

Let e

i

=

y

i

α(

t

)

x

i

β(

t

) (

i

=

1

, . . . ,

4

)

and subtract Eq.

(3.20)

from Eq.

(3.21)

, then the error dynamics can be obtained:

˙

e

1

=

e

2

− ˙

α(

t

)

x

1

+

β(

t

) − ˙β(

t

) +

u

1

˙

e

2

= −a

(

1

+

sin

ω

t

)

e

1

ae

2

+

be

3

(

1

+

sin

ω

t

)(

y

31

α(

t

)

x

3 1

) − ˙α(

t

)

x

2

+

(−

a

(

1

+

sin

ω

t

) −

a

+

b

)β(

t

) − ˙β(

t

) +

u

2

˙

e

3

=

e

4

− ˙

α(

t

)

x

3

+

β(

t

) − ˙β(

t

) +

u

3

˙

e

4

=

(

1

+

sin

ω

t

)

e

3

ae

4

+

be

1

a

(

1

+

sin

ω

t

)(

y

33

α(

t

)

x

3 3

) − ˙α(

t

)

x

4

+

(−(

1

+

sin

ω

t

) −

a

+

b

)β(

t

) − ˙β(

t

) +

u

4

.

(3.22)

Step 1. Construct a Lyapunov function

V

(

t

,

e

) =

1

2

e

T

3

(

t

)

e

=

1

2

λ

11

(

t

)

e

2 1

+

1

2

λ

22

(

t

)

e

2 2

+

1

2

λ

33

(

t

)

e

2 3

+

1

2

λ

44

(

t

)

e

2 4

.

(3.23)

Its derivative is

˙

V

(

t

,

e

) =

1

2

˙

λ

11

(

t

)

e

21

+

λ

11

(

t

)

e

1

˙

e

1

+

1

2

˙

λ

22

(

t

)

e

22

+

λ

22

(

t

)

e

2

˙

e

2

+

1

2

˙

λ

33

(

t

)

e

23

+

λ

33

(

t

)

e

3

e

˙

3

+

1

2

˙

λ

44

(

t

)

e

24

+

λ

44

(

t

)

e

4

e

˙

4

.

(3.24)

Step 2. Eq.

(3.24)

can be rewritten in the following form

˙

V

(

t

,

e

) =

G

1

11

, ˙λ

11

)

e

21

+

G

2

22

, ˙λ

22

)

e

22

+

G

3

33

, ˙λ

33

)

e

32

+

G

4

44

, ˙λ

44

)

e

24

+ [H

1

11

, . . . , λ

44

,

x

1

, . . . ,

x

4

,

y

1

, . . . ,

y

4

,

t

) + λ

11

u

1

]e

1

+ [H

2

11

, . . . , λ

44

,

x

1

, . . . ,

x

4

,

y

1

, . . . ,

y

4

,

t

) + λ

22

u

2

]e

2

+ [H

3

11

, . . . , λ

44

,

x

1

, . . . ,

x

4

,

y

1

, . . . ,

y

4

,

t

) + λ

33

u

3

]e

3

+ [H

4

11

, . . . , λ

44

,

x

1

, . . . ,

x

4

,

y

1

, . . . ,

y

4

,

t

) + λ

44

u

4

]e

4

(3.25)

where

G

1

11

, ˙λ

11

) =

1

2

˙

λ

11

(

t

)

G

2

22

, ˙λ

22

) =

1

2

˙

λ

22

(

t

) −

a

λ

22

(

t

)

G

3

33

, ˙λ

33

) =

1

2

˙

λ

33

(

t

)

G

4

44

, ˙λ

44

) =

1

2

˙

λ

44

(

t

) −

a

λ

44

(

t

)

H

1

11

, . . . ,

t

) = λ

11

(

t

)[− ˙α(

t

)

x

1

+

β(

t

) − ˙β(

t

)] +

b

λ

44

(

t

)

e

4

H

2

11

, . . . ,

t

) = λ

11

(

t

)

e

1

+

λ

22

(

t

)[−

a

(

1

+

sin

ω

t

)

e

1

(

1

+

sin

ω

t

)(

y

31

α(

t

)

x

3 1

) − ˙α(

t

)

x

2

+

(−

a

(

1

+

sin

ω

t

) −

a

+

b

)β(

t

) − ˙β(

t

)]

H

3

11

, . . . ,

t

) =

b

λ

22

(

t

)

e

2

+

λ

33

(

t

)[− ˙α(

t

)

x

3

+

β(

t

) − ˙β(

t

)]

H

4

11

, . . . ,

t

) = λ

33

(

t

)

e

3

+

λ

44

(

t

)[−(

1

+

sin

ω

t

)

e

3

a

(

1

+

sin

ω

t

)(

y

33

α(

t

)

x

3 3

) − ˙α(

t

)

x

4

+

(−(

1

+

sin

ω

t

) −

a

+

b

)β(

t

) − ˙β(

t

)].

(3.26)

(11)

Step 3. Since some of G

j

jj

, ˙λ

jj

)

depend on

λ

jj

(

t

)

and

λ

˙

jj

(

t

) (

j

=

2

,

4

)

, the remaining G

k

kk

, ˙λ

kk

)

depend only on

λ

˙

kk

(

t

) (

k

=

1

,

3

)

, Eq.

(3.26)

can be classified as form (2).

Step 4. Assume

λ

11

(

t

) =

1

λ

33

(

t

) =

1

(3.27)

H

1

11

, . . . , λ

44

,

x

1

, . . . ,

x

4

,

y

1

, . . . ,

y

4

,

t

) + λ

11

(

t

)

u

1

= −

e

1

H

3

11

, . . . , λ

44

,

x

1

, . . . ,

x

4

,

y

1

, . . . ,

y

4

,

t

) + λ

33

(

t

)

u

3

= −e

3

(3.28)

H

2

11

, . . . , λ

44

,

x

1

, . . . ,

x

4

,

y

1

, . . . ,

y

4

,

t

) + λ

22

(

t

)

u

2

=

0

H

4

11

, . . . , λ

44

,

x

1

, . . . ,

x

4

,

y

1

, . . . ,

y

4

,

t

) + λ

44

(

t

)

u

4

=

0

(3.29)

and appropriately design the controllers u

i

(

i

=

1

, . . . ,

4

)

and

λ

22

(

t

)

,

λ

44

(

t

)

u

1

= −y

1

b

2

+

sin

ω

t

y

4

+

(α(

t

) + ˙α(

t

))

x

1

+

b

α(

t

)

2

+

sin

ω

t

x

4

+

b

β(

t

)

2

+

sin

ω

t

+ ˙

β(

t

)

u

2

= −ay

1

+

a

α(

t

)

x

1

+ ˙

α(

t

)

x

2

+

(

1

+

sin

ω

t

)(

y

31

α(

t

)

x

3 1

) + (

a sin

ω

t

+

3a

b

)β(

t

) + ˙β(

t

)

u

3

= −y

3

b

2

+

sin

ω

t

y

2

+

(α(

t

) + ˙α(

t

))

x

3

+

b

α(

t

)

2

+

sin

ω

t

x

2

+

b

β(

t

)

2

+

sin

ω

t

+ ˙

β(

t

)

u

4

= −y

3

+

α(

t

)

x

3

+ ˙

α(

t

)

x

4

+

a

(

1

+

sin

ω

t

)(

y

33

α(

t

)

x

3 3

) + (

sin

ω

t

+

a

b

+

2

)β(

t

) + ˙β(

t

)

(3.30)

λ

22

l

(

t

) =

1

a

(

2

+

sin

ω

t

)

λ

44

(

t

) =

1

2

+

sin

ω

t

(3.31)

such that

∀t

0

,

0

< λ

m22

=

1

3a

λ

22

(

t

) ≤ λ

M22

=

1

a

∀t

0

,

0

< λ

m44

=

1

3

λ

44

(

t

) ≤ λ

M44

=

1

(3.32)

∀t

0

,

G

2

22

, ˙λ

22

) =

1

2

˙

λ

22

(

t

) −

a

λ

22

(

t

)

=

(

4a

+

2a sin

ω

t

+

ω

cos

ω

t

)

2a

(

2

+

sin

ω

t

)

2

=

(

2

+

sin t

+

cos t

)

(

2

+

sin t

)

2

<

0

(

a

=

0

.

5

, ω =

1 in simulation

)

∀t

0

,

G

4

44

, ˙λ

44

) =

1

2

˙

λ

44

(

t

) −

a

λ

44

(

t

)

=

(

4a

+

2a sin

ω

t

+

ω

cos

ω

t

)

2

(

2

+

sin

ω

t

)

2

=

(

2

+

sin t

+

cos t

)

2

(

2

+

sin t

)

2

<

0

(

a

=

0

.

5

, ω =

1 in simulation

).

(3.33)

Now, the mixed error dynamics is replaced by pure error dynamics:

˙

V

(

t

,

e

) = [

G

1

11

, ˙λ

11

) − λ

11

]e

21

+

G

2

22

, ˙λ

22

)

e

22

+ [G

3

33

, ˙λ

33

) − λ

33

]e

23

+

G

4

44

, ˙λ

44

)

e

24

.

(3.34)

Then the Lyapunov function can be obtained

V

(

t

,

e

) =

1

2

e

2 1

+

1

2a

(

2

+

sin

ω

t

)

e

2 2

+

1

2

e

2 3

+

1

2

(

2

+

sin

ω

t

)

e

2 4

(3.35)

and

˙

V

(

t

,

e

) = −

e

21

2

+

sin t

+

cos t

(

2

+

sin t

)

2

e

2 2

e

2 3

2

+

sin t

+

cos t

2

(

2

+

sin t

)

2

e

2 4

.

(3.36)

Since Lyapunov global asymptotical stability theorem is satisfied, the global generalized synchronization is achieved.

(12)

4. Conclusions

The generalized synchronization is studied by applying pure error dynamics and elaborate Lyapunov function in this

paper. By classification of the forms of

V

˙

(

t

,

e

)

, the complexity of designing suitable Lyapunov function is reduced greatly.

The proposed method is effectively applied to both autonomous and nonautonomous double Mathieu systems.

Acknowledgment

This research was supported by the National Science Council, Republic of China, under Grant Number NSC

94-2212-E-009-013.

References

[1] K.M. Cuomo, V. Oppenheim, Circuit implementation of synchronized chaos with application to communication, Physical Review Letters 71 (1993) 65–68.

[2] L. Kocarev, U. Parlitz, General approach for chaotic synchronization with application to communication, Physical Review Letters 74 (1995) 5028–5031. [3] S.K. Han, C. Kerrer, Y. Kuramoto, Dephasing and bursting in coupled neural oscillators, Physical Review Letters 75 (1995) 3190–3193.

[4] B. Blasius, A. Huppert, L. Stone, Complex dynamics and phase synchronization in spatially extended ecological systems, Nature 399 (1999) 354–359. [5] H.K. Chen, Chaos and chaos synchronization of a symmetric gyro with linear-plus-cubic damping, Journal of Sound and Vibration 255 (2002) 719–740. [6] H.K. Chen, T.N. Lin, Synchronization of chaotic symmetric gyros by one-way coupling conditions, Journal of Mechanical Engineering Science 217 (2003)

331–340.

[7] Z.M. Ge, T.C. Yu, Y.S. Chen, Chaos synchronization of a horizontal platform system, Journal of Sound and Vibration 268 (2003) 731–749.

[8] Z.M. Ge, T.N. Lin, Chaos, chaos control and synchronization of electro-mechanical gyrostat system, Journal of Sound and Vibration 259 (2003) 585–603. [9] H.K. Chen, T.N. Lin, J.H. Chen, The stability of chaos synchronization of the Japanese attractors and its application, Japanese Journal of Applied Physics

42 (2003) 7603–7610.

[10] Z.M. Ge, Y.S. Chen, Synchronization of unidirectional coupled chaotic systems via partial stability, Chaos, Solitons and Fractals 21 (2004) 101–111. [11] Z.M. Ge, C.C. Chen, Phase synchronization of coupled chaotic multiple time scales systems, Chaos, Solitons and Fractals 20 (2004) 639–647. [12] Z.M. Ge, C.C. Lin, Y.S. Chen, Chaos, chaos control and synchronization of the vibrometer system, Journal of Mechanical Engineering Science 218 (2004)

1001–1020.

[13] Z.M. Ge, W.Y. Leu, Chaos synchronization and parameter identification for loudspeaker system, Chaos, Solitons and Fractals 21 (2004) 1231–1247. [14] Z.M. Ge, C.M. Chang, Chaos synchronization and parameter identification for single time scale brushless DC motor, Chaos, Solitons and Fractals 20

(2004) 889–903.

[15] Z.M. Ge, J.K. Lee, Chaos synchronization and parameter identification for gyroscope system, Applied Mathematics and Computation 63 (2004) 667–682. [16] Z.M. Ge, H.W. Wu, Chaos synchronization and chaos anticontrol of a suspended track with moving loads, Journal of Sound and Vibration 270 (2004)

685–712.

[17] Z.M. Ge, C.Y. Yu, Y.S. Chen, Chaos synchronization and chaos anticontrol of a rotational supported simple pendulum, JSME International Journal, Series C 47 (1) (2004) 233–241.

[18] Z.M. Ge, W.Y. Leu, Anti-control of chaos of two-degree-of-freedom loudspeaker system and chaos synchronization of different order system, Chaos, Solitons and Fractals 20 (2004) 503–521.

[19] Z.M. Ge, J.W. Cheng, Y.S. Cheng, Chaos anticontrol and synchronization of three time scales brushless DC motor system, Chaos, Solitons and Fractals 22 (2004) 1165–1182.

[20] Z.M. Ge, C.I. Lee, Anticontrol and synchronization of chaos for an autonomous rotational machine system with a hexagonal centrifugal governor, Chaos, Solitons and Fractals 282 (2005) 635–648.

[21] Z.M. Ge, C.I. Lee, Control, anticontrol and synchronization of chaos for an autonomous rotational machine system with time-delay, Chaos, Solitons and Fractals 23 (2005) 1855–1864.

[22] H.K. Chen, Global chaos synchronization of new chaotic systems via nonlinear control, Chaos, Solitons and Fractals 4 (2005) 1245–1251.

[23] Z.M. Ge, J.W. Cheng, Chaos synchronization and parameter identification of three time scales brushless DC motor, Chaos, Solitons and Fractals 24 (2005) 597–616.

[24] Z.M. Ge, Y.S. Chen, Adaptive synchronization of unidirectional and mutual coupled chaotic systems, Chaos, Solitons and Fractals 26 (2005) 881–888. [25] H.K. Chen, Synchronization of two different chaotic systems: A new system and each of the dynamical systems Lorenz, Chen and Lü, Chaos, Solitons

and Fractals 25 (2005) 1049–1056.

[26] N.F. Rulkov, M.M. Sushchik, L.S. Tsimring, H.D.I. Abarbanel, Generalized synchronization of chaos in directionally coupled chaotic systems, Physical Review E 51 (1995) 980–994.

[27] H.D.I. Abarbanel, N.F. Rulkov, M.M. Sushchik, Generalized synchronization of chaos: The auxiliary system approach, Physical Review E 53 (1996) 4528–4535.

[28] S.S. Yang, C.K. Duan, Generalized synchronization in chaotic systems, Chaos, Solitons and Fractals 9 (1998) 1703–1707.

[29] M. Inoue, T. Kawazoe, Y. Nishi, M. Nagadome, Generalized synchronization and partial synchronization in coupled maps, Physics Letters A 249 (1998) 69–73.

[30] J.R. Terry, G.D. VanWiggeren, Chaotic communication using generalized synchronization, Chaos, Solitons and Fractals 12 (2001) 145–152. [31] J.G. Lu, Y.G. Xi, Linear generalized synchronization of continuous-time chaotic systems, Chaos, Solitons and Fractals 17 (2003) 825–831. [32] A.E. Hramov, A.A. Koronovskii, Generalized synchronization: A modified system approach, Physical Review E 71 (2005) 067201. [33] Y.W. Wang, Z.H. Guan, Generalized synchronization of continuous chaotic system, Chaos, Solitons and Fractals 27 (2006) 97–101.

[34] G.P. Jiang, W.K.S. Tang, A global synchronization criterion for coupled chaotic systems via unidirectional linear error feedback, International Journal of Bifurcation and Chaos 12 (2002) 2239–2253.

[35] G.P. Jiang, G.R. Chen, W.K.S. Tang, A new criterion for chaos synchronization using linear state feedback control, International Journal of Bifurcation and Chaos 13 (2003) 2343–2351.

[36] G.P. Jiang, W.K.S. Tang, G.R. Chen, A simple global synchronization criterion for coupled chaotic systems, Chaos, Solitons and Fractals 15 (2003) 925–935.

[37] J. Sun, Y. Zhang, Some simple global synchronization criterions for coupled time-varying chaotic systems, Chaos, Solitons and Fractals 19 (2004) 93–98. [38] E.M. Elabbasy, H.N. Agiza, M.M. El-Dessoky, Global synchronization criterion and adaptive synchronization for new chaotic system, Chaos, Solitons

and Fractals 23 (2005) 1299–1309.

[39] J.J.E. Slotine, W.P. Li, Applied Nonlinear Control, Prentice-Hall, 1991.

[40] Z.M. Ge, C.X. Yi, Chaos in a nonlinear damped mathieu system, in a nano resonator system and its fractional order systems, Chaos, Solitons and Fractals 32 (2007) 42–67.

[41] Z.M. Ge, C.X. Yi, Parameter excited chaos synchronization of integral and fractional order nano-resonator system, Mathematical Methods, Physical Models and Simulation in Science and Technology 1 (2008) 239–265.

數據

Fig. 1. (a) Phase portraits and Poincaré maps (b) Bifurcation diagram (c) Lyapunov exponents for autonomous double Mathieu system.
Fig. 2. (a) Phase portraits and Poincaré maps (b) Bifurcation diagram (c) Lyapunov exponents for nonautonomous double Mathieu system.
Fig. 3. (a) Phase portraits of master system (b) Phase portraits of x i to y i ( i = 1 ,
Fig. 4. (a) Phase portraits of master system (b) Phase portraits of x i to y i ( i = 1 ,

參考文獻

相關文件

List up all different types of high-sym k (points, lines, planes) 2...

Chen, Conditions for error bounds and bounded level sets of some merit func- tions for the second-order cone complementarity problem, Journal of Optimization Theory and

Chen, Conditions for error bounds and bounded level sets of some merit func- tions for the second-order cone complementarity problem, Journal of Optimization Theory and

Department of Mathematics – NTNU Tsung-Min Hwang November 30, 2003... Department of Mathematics – NTNU Tsung-Min Hwang November

Although many excellent resource synchronization protocols have been pro- posed, most of them are either for hard real-time task scheduling with the maxi- mum priority inversion

Type case as pattern matching on values Type safe dynamic value (existential types).. How can we

A waiting process only waits for a bounded number of processes to enter their critical sections... * All rights reserved, Tei-Wei Kuo, National Taiwan

2 System modeling and problem formulation 8 3 Adaptive Minimum Variance Control of T-S Fuzzy Model 12 3.1 Stability of Stochastic T-S Fuzzy