• 沒有找到結果。

男女性在腰椎骨分佈及其老化時變動之差異

N/A
N/A
Protected

Academic year: 2021

Share "男女性在腰椎骨分佈及其老化時變動之差異"

Copied!
3
0
0

加載中.... (立即查看全文)

全文

(1)

1

行政院國家科學委員會專題研究計畫成果報告

男女性在腰椎骨分佈及其老化時變動之差異

Gender differences in the distribution of bone mass in the third lumbar

vertebra and its age-related changes

計畫編號:NSC 89-2314-B-002-084

執行期限:88 年 08 月 01 日至 89 年 07 月 31 日

主持人:蔡克嵩 執行機構及單位名稱台:台大醫院檢驗醫學部

計劃參與人員:鄭文誠 執行機構及單位名稱台:台大醫院檢驗醫學部

一、中文摘要 骨密度測量可有效預測日後發生骨折 之風險。目前脊椎骨之骨密度測量,一般 是以正面方式測量,測量之部位包括脊椎 體(vertebral body, VB)及其後方之脊突等 (posterior segment, PS),唯脊椎骨之骨質疏 鬆壓迫性骨折,幾全發生在 VB 。若 VB 與 PS 之骨量分佈產生變異,正面測量只能 測得總量(VB 與 PS 之和)將降低其預測骨 折風險之能力。本研究以側面測量方式, 分別測量 VB 與 PS 之骨量,在 65 位男性 及 112 女性觀察年齡、停經及性別對 VB 佔骨總量比率之影響。結果顯示在停經年 齡前,女性之比率(mean±SEM: 39.1±0.9%) 較同齡男性(50.0±1.7%)為低(p<0.0001)。在 停經年齡之後,女性隨老化 VB 佔總骨量 之比率逐年減少(每年 0.22%, p=0.0001), 但在男性則與年輕時無異。此外,本研究 也顯示總骨量在男性均隨年齡減少,但各 年齡層之男性均較女性為多。是以女性在 總骨量己較男性為少之狀況下,在停經後 因 VB 內之海綿骨較多,損耗較快,反而 有更低之 VB 所佔總量比率,不利於抗壓 之需求。此因素應是停後女性易有壓迫性 骨折之原因之一。此外,因男女性之骨量 分佈狀況不同,以傳統正面方式測量骨密 度時,宜考量性別及年齡因素,才能準確 評估脊椎體壓迫性骨折之風險。 關鍵詞:脊椎骨、骨量分怖、年齡、性別 Abstract

Compression fractures occur mainly at the vertebral body. Variations in the distribution of bone mass in a vertebra, if undefined, may bias the ability of the

acquired bone mineral density values, which was usually measured posteroanteriorly, to predict the risk of fractures. To evaluate the effects of age and gender on the distribution of bone mineral content in the third lumbar vertebrae. We performed a cross sectional study on the distribution of bone mineral content in the third lumbar vertebrae. The bone mineral content of the whole L3 including the L3 vertebral body and the posterior segment was measured using a lateral approach with a dual energy x-ray absorptiometer on 177 healthy Taiwanese adults including 65 men, and 55

premenopausal and 57 postmenopausal women. The proportion of bone mineral content (BMC) in the vertebral body was significantly lower in premenopausal women than in age-matched men (39.1±0.9% vs. 50.0±1.7%, P< 0.0001). Furthermore, while postmenopausal women showed a decreased proportion of BMC in the vertebral body with increased age (about -0.0022 per year, p=0.0001), premenopausal women and men showed a sustained proportion. Thus, the proportion of BMC distributed in the body of L3 vertebrae was lower in women than in men. The discrepancy of this parameter between the genders was even larger with increased ages.

Key words: gender, age, L3 vertebral body, bone content distribution. 二、緣由與目的 以雙光子式吸光測定腰椎骨密度,可精 確反映該部分骨骼之力學強度[1, 9, 18]並 預測發生腰椎骨折之風險[12]。此種檢查通 常以正面方式檢測,測得之部位包括脊椎

(2)

2 骨體(vertebral body,簡稱 VB )及後側之部 份(posterior segments,簡稱 PS)。但脊椎骨 之骨密度亦能以側面方式測試,可以分別 測定 VB 及 PS 所含之骨量。國外之研究者 [4]曾以該法測量年輕之男女性;確實觀察 到 年 輕 男 性 VB 與 VB+PS 之 比 值 ( 即 VB/total ratio 簡稱 VBTR),較年輕女性為 高。由於 VB 含大量海綿骨,PS 則以皮質 骨為主,中老年時,流失之速度可能兩者 不盡相同,而且男女性之狀況也可能不 同。本研究以側面測量方式,測定在不同 年齡及不同姓別之男、女性之 VBTR,以 觀察年齡、停經與性別對 VBTR 之影響。 其目的也在於顯示傳統之正面測量可能忽 略姓別及年齡之差異造成之偏差。 三、研究方式    本研究以 Norland XR-26 式雙光子吸光 儀檢測 65 位男性及 112 位女性,年齡均為 22 至 86 歲。112 位女性中 57 位已停經。 除以側面分別測定第三腰椎 VB 及 PS 的骨 量(bone mineral content, BMC)外,也以正 面之傳統方式測定第三腰椎之 BMC。然後 以多變項迴歸分析統計之。 四、結果與討論: 圖 A 可 見 男 性 以 正 面 方 式 測 得 之 BMC(空方型)在各年齡均較女性為高(實 心及虛心之圓點),高出約 30%。男女性之 BMC 均依年齡之增加而漸減。圖 B 可見男 性在各年齡所呈現之 VBTR 均較同年齡女 性為高,而且不因年齡老化而改變,均約 為 0.5。女性則在停經前此值為 0.39,停經 後則因老化漸降,每年 VBTR 減少 0.22% (p=0.0001)。至 80 歲時 VBTR 值約為 0.3。 由此可見女性骨量在各年齡均較同齡男性 為少。但因停經因素,海綿骨耗損較多, 不但沒有補償女性 VB 內骨量較少之狀 況,反而在易遭壓迫變形的脊椎體,骨量 減少更嚴重。本研究之結果有助於瞭解女 性在停經後,發生骨質疏鬆性脊椎體壓迫 性骨折之病因,也提供數據,供此較不同 年齡、不同性別之國人使用。在做一般之 正面 BMC 測量時,可校正男女性及年齡之 差異,以真實反映 VB 之骨密度。 五、成果自許: 本研究因具有原創性,先前幾乎沒有 相同之報告,而且順利依規劃完成,得到 學術及實用上有價值之數據,己整理成原 創 性 論 文 , 投 稿 至 國 際 骨 科 優 良 雜 誌 Spine,並已經被接受刊出。 六、參考文獻:

1. Bjarnason K, Hassager C, Svendsen OL, Stang H, Christiansen C. Anteroposterior and lateral spine DXA for the

assessment of vertebral body strength: Comparison with hip and forearm measurement. Osteoporos Int 1996; 6: 37-42.

2. Blake GM. Jagathesan T, Herd RJM, Fogelman I. Dual X-ray absorptiometry of the lumbar spine the precision of paired anteroposterior / lateral studies. Br J Radiol 1994; 67: 624-30.

3. Eastell R, Cedel SL, Wahner HW, Riggs BL, Melton LJ III. Classification of vertebral fractures. J Bone Miner Res 1991; 6:207-15.

4. Fournier PE, Rizzoli R, Slosman DO, Buchs B, Bonjour JP. Relative

contribution of vertebral body and posterior arch in female and male lumbar spine peak bone mass. Osteoporos Int 1994; 4: 264-72.

5. Hamilton LC. Regression with graphics: A second course in applied statistics. Belmont, California, 1992.

6. Larnach TA, Boyd SJ, Smart RC, Butler SP, Rohl PG, Diamond TH.

Reproducibility of lateral spine scans using dual energy X-ray absorptiometry. Calcif Tissue Int 1992; 51: 255-8. 7. Mazess RB, Gifford CA, Bisek JP,

Barden HS, Hanson JA. DEXA measurement of spine density in the

(3)

3

lateral projection. I: Methodology. Calcif Tissue Int 1991; 49: 235-9.

8. Mosekilde L. and Mosekilde L. Sex difference in age related changes in vertebral bone size, density and biomechanical competence in normal individuals. Bone 11: 67-73; 1990. 9. Myers BS, Arbogest KB, Lobaugh B,

Harper KD, Richardson WJ, Drezner MK. Improved assessment of lumbar vertebral body strength using supine lateral dual-energy X-ray absorptiometry. J Bone Miner Res 1994; 9: 687-93. 10. Orwoll ES, Oviatt SK, Mann T. The

impact of osteophytic and vascular calcifications on vertebral mineral density measurements in men. J Clin Endocrinol Metab 1990; 70: 1202-7. 11. Peacock DJ, Egger P, Taylor P, Cawley

MID, Cooper C. Lateral bone density measurements in osteoarthritis of the lumbar spine. Ann Rheum Dis 1996; 55:196-8.

12. Riggs BL, Melton LJ III. Involutional osteoporosis. N Engl J Med 1986; 314: 1676-86.

13. Rupich RC, Griffin MG, Pacifici R, Avioli LV, Susman N. Lateral dual-energy radiography: Artifact error from rib and pelvic bone. J Bone Miner Res 1992; 7: 97-101.

14. Seeman E, Formica C, Mosekilde L. Equivalent deficits in bone mass of the vertebral body and posterior processes in women with vertebral fractures:

implications regarding the pathogenesis of spinal osteoporosis. J Bone Miner Res 1995; 12: 2005-10.

15. Tothill P, Avenell A, Reid D. Precision and accuracy of measurements of whole-body mineral: comparisons between Hologic, Lunar and Norland dual-energy X-ray absorptiometers. Br J Radiol 1994; 67:1210-7.

16. Tsai KS, WC Cheng, CK Chen, TV Sanchez, CT Su, PU Chieng, RS Yang. Effect of bone area on spine density in Chinese men and women in Taiwan. Bone 1997; 21: 547-51.

17. Tsai KS, Twu SJ, Chieng PU, et al. Prevalence of vertebral fractures in Chinese men and women in urban Taiwanese communities. Calcif Tissue Int 1996; 59: 249-53.

18. Yang RS, Wang SS, Liu HJ, Liu TK, Hang YS, Tsai KS. Differential effects of bone mineral content and bone area on vertebral strength in a swine model. Calcif Tissue Int 1998; 63: 86-90.

參考文獻

相關文件

Milk and cream, in powder, granule or other solid form, of a fat content, by weight, exceeding 1.5%, not containing added sugar or other sweetening matter.

Later, though, people learned that Copernicus was in fact telling the

Estimated resident population by age and sex in statistical local areas, New South Wales, June 1990 (No. Canberra, Australian Capital

For 5 to be the precise limit of f(x) as x approaches 3, we must not only be able to bring the difference between f(x) and 5 below each of these three numbers; we must be able

[This function is named after the electrical engineer Oliver Heaviside (1850–1925) and can be used to describe an electric current that is switched on at time t = 0.] Its graph

• The  ArrayList class is an example of a  collection class. • Starting with version 5.0, Java has added a  new kind of for loop called a for each

 develop a better understanding of the design and the features of the English Language curriculum with an emphasis on the senior secondary level;..  gain an insight into the

We need a whole-school approach, together with joint efforts made at different levels, ranging from the system to the school organisation, the school curriculum (including