• 沒有找到結果。

A Study on the Optimization of a PEM Fuel Cell with Open Cathodes 黃建彰、鄭錕燦

N/A
N/A
Protected

Academic year: 2022

Share "A Study on the Optimization of a PEM Fuel Cell with Open Cathodes 黃建彰、鄭錕燦"

Copied!
2
0
0

加載中.... (立即查看全文)

全文

(1)

A Study on the Optimization of a PEM Fuel Cell with Open Cathodes 黃建彰、鄭錕燦

E-mail: 9608368@mail.dyu.edu.tw

ABSTRACT

In a PEM fuel cell stack with open cathodes air is forced to go through its cathode sides by an axial-fan, in which the air has a two-fold effect----being both a reactant gas and a coolant. This type of fuel cell system has a lot of merits, such as simple structure, compactness, and light-weight. So, they can be used as the power sources of small vehicles, such as electric wheel-chairs, scooters, and bikes. For a PEM fuel cell stack with open cathodes, the performance of the fuel cell depends on the quality of its membrane electrode assembly. Furthermore, the air channel size and air flow speed on the cathode side have substantial effect on the

temperature and performance of the stack. The present thesis focuses on this type of fuel cell stack. The temperature distribution and performance of the fuel cell under various channel designs and air flow speeds were investigated by numerical simulations using the commercial code COMSOL MULTIPHYSICS.

Keywords : PEM ; fuel cell ; Numerical simulation

Table of Contents

封面內頁 簽名頁 博碩士論文暨電子檔案上網授權書... iii 中文摘要... iv ABSTRACT... v 誌謝... vi 目錄... vii 圖目 錄... x 符號說明... xiii 第一章 緒論... 1 1.1前

言... 1 1.2燃料電池的介紹... 2 1.2.1燃料電池的原理... 2 1.2.2燃料電池的構 造... 4 1.2.3燃料電池的優點... 7 1.2.4燃料電池主要技術問題... 9 1.2.5燃料電池的性能 曲線... 9 1.3文獻回顧... 12 1.4研究動機及目的... 16 第二章 研究方

法... 18 2.1 COMSOL工程分析軟體簡介... 18 2.2有限元素法... 19 2.3數值模擬流 程... 20 2.4模型說明... 21 2.4.1氣體擴散層中之質傳模型... 21 2.4.2速度場、溫度 場與濃度場之計算模型... 23 2.5基本假設... 25 2.6統御方程式... 25 2.6.1氣體擴散層質 傳之統御方程式... 26 2.6.2速度分佈之統御方程式... 27 2.6.3溫度分佈之統御方程式... 27 2.6.4反 應物之濃度分佈之統御方程式... 28 2.7邊界條件... 29 2.7.1氣體擴散層質傳之邊界條件... 29 2.7.2速度分佈之邊界條件... 29 2.7.3溫度分佈之邊界條件... 30 2.7.4反應物濃度分佈之邊界條 件... 31 2.8格點分佈... 33 第三章 結果與討論... 36 3.1有效擴散係數之經驗方程式 驗證... 36 3.1.1氣體在擴散層內擴散的情形... 36 3.1.2彎曲係數之驗證... 38 3.2燃料電池溫度分 佈... 39 3.3反應物濃度分佈... 42 3.3.1氧氣質量分率在擴散層至流道間的分佈情形... 42 3.3.2水 氣質量分率在擴散層至流道間的分佈情形... 45 3.3.3不同入口流速對於氧氣、水氣質量分率及壓力變 化的影

響... 47 3.4燃料電池性能曲線... 49 第四章 結論及建議與未來研究方向... 53 4.1結 論... 53 4.2建議與未來研究方向... 54 參考文獻... 55

REFERENCES

[1] 蔡克群, “燃料電池導論”,化工技術, 111期, 122-131 (2002) [2] T. Suzuki, H. Murata, T. Hatanaka, Y. Morimoto, “Analysis of the Catalyst Layer of Polymer Electrolyte Fuel Cells”,R&D Review of Toyota CRDL, 39 ,33-38 (2000).

[3] D. M. Bernardi, M. W. Verbrugge, “Mathematical model of a gas diffusion electrode bonded to a polymer electrolyte”, AICHE Journal, 37, 1151-1163 (1991).

[4] A. C. West, T. F. Fuller, “Influence of rib spacing in proton exchange membrane electrode assemblies”, Journal of the Applied Electrochemistry, 26, 557-565 (1996).

[5] M. Eikerling, A. A. Kornyshev, “Modelling the performance of the cathode catalyst layer of polymer electrolyte fuel cells.”, Journal of Electroanalytical Chemistry, 453, 89-106 (1998).

[6] V. Gurau, H. Liu, and S. Kakac, “Two-Dimensional Model for Proton Exchange Membrane Fuel Cells”, AICHE Journal, 44, 2410-2422 (1998) [7] C. Boyer, S. Gamburzev, O. Velev, S. Srinivasan and A. J. Appleby, “Measurements of proton conductivity in the active layer of PEM fuel cell gas diffusion electrodes”,Electrochimica Acta , 43, 3703-3709 (1998).

(2)

[8] S. Dutta, S. Shimpalee and J. W. Zee, “Three-dimensional numerical simulation of straight channel PEM fuel cells”,Journal of Applied Electrochemistry, 30, 135-146 (2000).

[9] K. Dannenberg, P. Ekdunge, G. Lindbergh, “Mathematical Model of the PEMFC”, Journal of Applied Electrochemistry, 30 1377-1387 (2000).

[10] W. M. Yan, C. Y. Soong, F. Chen, H. S. Chu, “Effects of flow distributor geometry and diffusion layer porosity on reactant gas transport and performance of proton exchange membrane fuel cells”, Journal of Power Sources ,125, 27–39 (2004).

[11] G. Hu, J. Fan, S. Chen, Y. Liu, K. Cen, “Three-dimensional numerical analysis of proton exchange membrane fuel cells (PEMFCs) with conventional and interdigitated flow fields” , Journal of Power Sources , 136, 1–9 (2004).

[12] G. H. Guvelioglu, H. G. Stenger,“Computational fluid dynamics modeling of polymer electrolyte membrane fuel cells”, Journal of Power Sources, 147, 95–106 (2005).

[13] W. Ying, Y. J. Sohn, W. Y. Lee, J. Ke, C. S. Kim, “Three-dimensional modeling and experimental investigation for an air-breathing polymer electrolyte membrane fuel cell (PEMFC)”, Journal of Power Sources, 145, 563–571 (2005).

[14] T. J. Marshall, “The diffusion of gases through porous media”, Journal of Soil Science, 10, 79-82 (1959).

[15] P. Moldrup, T. Olesen, J. Gamst, P. Schjonning, T. Yamaguchi, and D. E. Rolston, “Predicting the Gas Diffusion Coefficient in Repacked Soil: Water-Induced Linear Reduction Model”, Soil Sci. Soc. Am. J., 64, 1588-1594 (2000).

[16] S. H. Ge, B. L. Yi, “A mathematical model for PEMFC in different flow modes”, Journal of Power Sources ,124 , 1–11 (2003).

[17] W. Sun, B. A. Peppley, K. Karan, “Modeling the influence of GDL and flow-field plate parameters on the reaction distribution in the PEMFC cathode catalyst layer”, Journal of Power Sources, 144, 42-53 (2005).

[18] B. Cheng, O. Minggao, Y. Baolian, “Analysis of Water Management in Proton Exchange Membrane Fuel Cells”, TSINGHUA SCIENCE AND TECHNOLOGY, 11, 54-64 (2006).

[19] M. F. Serincan, and S. Yesilyurt, “Transient Analysis of Proton Electrolyte Membrane Fuel Cells (PEMFC) at Start-Up and Failure s”,Fuel cells, 0, 1-10 (2005).

[20] S. Mazumder, J.V. Cole, “Rigorous 3-D Mathematical Modeling of PEM Fuel Cells II. Model Predictions with Liquid Water Transport” , J. Electrochem. Soc., 150, 1510-1517 (2003).

[21] M. Grujicic, K. M. Chittajallu, “Design and optimization of polymer electrolyte membrane (PEM) fuel cells”, Applied Surface Science, 227, 56–72 (2004).

[22] M. Grujicic, K. M. Chittajallu, “Optimization of the cathode geometry in polymer electrolyte membrane (PEM) fuel cells”, Chemical Engineering Science , 59, 5883 -5895 (2004).

[23] Y. Shan, S. Y. Choe, “A high dynamic PEM fuel cell model with temperature effects”, Journal of Power Sources ,145, 30–39 (2005).

[24] L. Matamoros, D. Bruggemann, “Simulation of the water and heat management in proton exchange membrane fuel cells”, Journal of Power Sources ,161,203-213 (2006).

[25] N. Djilali, “Computational modeling of polymer electrolyte membrane (PEM) fuel cells: Challenges and opportunities”, Energy, 32, 269-280 (2007).

[26] 黃鎮江, “燃料電池”,全華科技圖書股份有限公司, 2003.

[27] 依寶廉, “燃料電池-原理與應用”,五南圖書出版股份有限公司, 2005.

參考文獻

相關文件

Teachers may encourage students to approach the poem as an unseen text to practise the steps of analysis and annotation, instead of relying on secondary

In this paper, we build a new class of neural networks based on the smoothing method for NCP introduced by Haddou and Maheux [18] using some family F of smoothing functions.

The case where all the ρ s are equal to identity shows that this is not true in general (in this case the irreducible representations are lines, and we have an infinity of ways

z gases made of light molecules diffuse through pores in membranes faster than heavy molecules. Differences

The Model-Driven Simulation (MDS) derives performance information based on the application model by analyzing the data flow, working set, cache utilization, work- load, degree

The min-max and the max-min k-split problem are defined similarly except that the objectives are to minimize the maximum subgraph, and to maximize the minimum subgraph respectively..

Type case as pattern matching on values Type safe dynamic value (existential types).. How can we

Experiment a little with the Hello program. It will say that it has no clue what you mean by ouch. The exact wording of the error message is dependent on the compiler, but it might