• 沒有找到結果。

Section 13.4 Motion in Space: Velocity and Acceleration 14. Find the velocity, acceleration, and speed of a particle with the given position function. r

N/A
N/A
Protected

Academic year: 2022

Share "Section 13.4 Motion in Space: Velocity and Acceleration 14. Find the velocity, acceleration, and speed of a particle with the given position function. r"

Copied!
1
0
0

加載中.... (立即查看全文)

全文

(1)

Section 13.4 Motion in Space: Velocity and Acceleration

14. Find the velocity, acceleration, and speed of a particle with the given position function.

r(t) =< t2, sin t − t cos t, cos t + t sin t >, t ≥ 0 Solution:

1318 ¤ CHAPTER 13 VECTOR FUNCTIONS 11. r() =

2  i + j+ −k ⇒ v() = r0() =√

2 i + j− −k, a() = v0() = j+ −k,

|v()| =√

2 + 2+ −2=

(+ −)2= + −.

12. r() = 2i+ 2 j + ln  k ⇒ v() = r0() = 2 i + 2 j + (1) k, a() = v0() = 2 i − (12) k,

|v()| =

42+ 4 + (12) =

[2 + (1)]2= |2 + (1)|.

13. r() = (cos  i + sin  j +  k) = cos  i + sin  j + k ⇒

v() = r0() = [(− sin ) + (cos )] i + [cos  + (sin )] j + (+ ) k

= [(cos  − sin ) i + (sin  + cos ) j + ( + 1) k]

a() = v0() = [(− sin  − cos ) + (cos  − sin )] i + [(cos  − sin ) + (sin  + cos )] j + [· 1 + ( + 1)] k

= [−2 sin  i + 2 cos  j + ( + 2) k]

|v()| =

2(cos  − sin )2+ 2(sin  + cos )2+ 2( + 1)2

=√

2

cos2 + sin2 − 2 cos  sin  + sin2 + cos2 + 2 sin  cos  + 2+ 2 + 1

= 

2+ 2 + 3

14. r() =

2 sin  −  cos  cos  +  sin 

v() = r0() = h2 cos  − (− sin  + cos ) − sin  +  cos  + sin i = h2  sin   cos i, a() = v0() = h2  cos  + sin  − sin  + cos i,

|v()| =

42+ 2sin2 + 2cos2 =√

42+ 2=√

52=√

5  [since  ≥ 0].

15. a() = 2 i + 2 k ⇒ v() =

a()  =

(2 i + 2 k)  = 2 i + 2k+ C. Then v(0) = C but we were given that v(0) = 3 i − j, so C = 3 i − j and v() = 2 i + 2k+ 3 i − j = (2 + 3) i − j + 2k.

r() =

v()  = 

(2 + 3) i − j + 2k

 = (2+ 3) i −  j +133k+ D. Here r(0) = D and we were given that r(0) = j + k, so D = j + k and r() = (2+ 3) i + (1 − ) j +1

33+ 1k.

16. a() = sin  i + 2 cos  j + 6 k ⇒ v() =

a()  =

(sin  i + 2 cos  j + 6 k)  = − cos  i + 2 sin  j + 32k+ C.

Then v(0) = −i + C but we were given that v(0) = −k, so −i + C = −k ⇒ C = i − k and v() = (1 − cos ) i + 2 sin  j + (32− 1) k.

r() =

v()  = 

(1 − cos ) i + 2 sin  j + (32− 1) k

 = ( − sin ) i − 2 cos  j + (3− ) k + D. Here r(0) = −2 j + D and we were given that r(0) = j − 4 k, so D = 3 j − 4 k and

r() = ( − sin ) i + (3 − 2 cos ) j + (3−  − 4) k.

° 2021 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

16. Find the velocity and position vectors of a particle that has the given acceleration and the given initial velocity and position.

a(t) = sin ti + 2 cos tj + 6tk, v(0) = −k, r(0) = j − 4k Solution:

354 ¤ CHAPTER 13 VECTOR FUNCTIONS 9. r() =

2+ 1 3 2− 1

⇒ v() = r0() =

2 32 2, a() = v0() = h2 6 2i,

|v()| =

(2)2+ (32)2+ (2)2=√

94+ 82= ||√ 92+ 8.

10. r() = h2 cos  3 2 sin i ⇒ v() = r0() = h−2 sin  3 2 cos i, a() = v0() = h−2 cos  0 −2 sin i,

|v()| =

4 sin2 + 9 + 4 cos2 =√13.

11. r() =

2  i + j+ −k ⇒ v() = r0() =√

2 i + j− −k, a() = v0() = j+ −k,

|v()| =√

2 + 2+ −2=

(+ −)2= + −.

12. r() = 2i+ 2 j + ln  k ⇒ v() = r0() = 2 i + 2 j + (1) k, a() = v0() = 2 i − (12) k,

|v()| =

42+ 4 + (12) =

[2 + (1)]2= |2 + (1)|.

13. r() = hcos  sin  i ⇒

v() = r0() = hcos  sin  i + h− sin  cos  1i = hcos  − sin  sin  + cos   + 1i a() = v0() = hcos  − sin  − sin  − cos  sin  + cos  + cos  − sin   + 1 + 1i

= h−2 sin  2 cos   + 2i

|v()| = 

cos2 + sin2 − 2 cos  sin  + sin2 + cos2 + 2 sin  cos  + 2+ 2 + 1

= 

2+ 2 + 3

14. r() =  sin  i +  cos  j + 2k ⇒ v() = r0() = (sin  +  cos ) i + (cos  −  sin ) j + 2 k, a() = v0() = (2 cos  −  sin ) i + (−2 sin  −  cos ) j + 2 k,

|v()| =

(sin2 + 2 sin  cos  + 2cos2) + (cos2 − 2 sin  cos  + 2sin2) + 42=√ 52+ 1.

15. a() = 2 i + 2 k ⇒ v() =

a()  =

(2 i + 2 k)  = 2 i + 2k+ C. Then v(0) = C but we were given that v(0) = 3 i − j, so C = 3 i − j and v() = 2 i + 2k+ 3 i − j = (2 + 3) i − j + 2k.

r() =

v()  = 

(2 + 3) i − j + 2k

 = (2+ 3) i −  j + 133k+ D. Here r(0) = D and we were given that r(0) = j + k, so D = j + k and r() = (2+ 3) i + (1 − ) j +1

33+ 1k.

16. a() = sin  i + 2 cos  j + 6 k ⇒ v() =

a()  =

(sin  i + 2 cos  j + 6 k)  = − cos  i + 2 sin  j + 32k+ C.

Then v(0) = −i + C but we were given that v(0) = −k, so −i + C = −k ⇒ C = i − k and v() = (1 − cos ) i + 2 sin  j + (32− 1) k.

r() =

v()  = 

(1 − cos ) i + 2 sin  j + (32− 1) k

 = ( − sin ) i − 2 cos  j + (3− ) k + D. Here r(0) = −2 j + D and we were given that r(0) = j − 4 k, so D = 3 j − 4 k and

r() = ( − sin ) i + (3 − 2 cos ) j + (3−  − 4) k.

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

39. Find the tangential and normal components of the acceleration vector.

r(t) = cos ti + sin tj + tk Solution:

SECTION 13.4 MOTION IN SPACE: VELOCITY AND ACCELERATION ¤ 361 38. r() = 22i+2

33− 2

j ⇒ r0() = 4 i + (22− 2) j,

|r0()| =

162+ (22− 2)2=√

44+ 82+ 4 =

4 (2+ 1)2= 2(2+ 1), r00() = 4 i + 4 j, r0() × r00() = (82+ 8) k. Then Equation 9 gives

= r0() · r00()

|r0()| = (4)(4) + (22− 2)(4)

2(2+ 1) = 8(2+ 1) 2(2+ 1) = 4

or by Equation 8,  = 0= 



2(2+ 1)

= 4

and Equation 10 gives = |r0() × r00()|

|r0()| = 8(2+ 1) 2(2+ 1) = 4.

39. r() = cos  i + sin  j +  k ⇒ r0() = − sin  i + cos  j + k, |r0()| =

sin2 + cos2 + 1 =√ 2, r00() = − cos  i − sin  j, r0() × r00() = sin  i − cos  j + k.

Then  = r0() · r00()

|r0()| = sin  cos  − sin  cos √

2 = 0 and  = |r0() × r00()|

|r0()| =

sin2 + cos2 + 1

√2 =

√2

√2 = 1.

40. r() =  i + 2j+ 2k ⇒ r0() = i + 2j+ 22k, |r0()| =√

1 + 42+ 44=

(1 + 22)2= 1 + 22, r00() = 2j+ 42k, r0() × r00() = 43i− 42j+ 2k,

|r0() × r00()| =√

166+ 164+ 42 =

42(22+ 1)2 = 2(22+ 1). Then

= r0() · r00()

|r0()| = 42+ 84

1 + 22 = 42(1 + 22)

1 + 22 = 42 and  = |r0() × r00()|

|r0()| = 2(22+ 1) 1 + 22 = 2. 41. r() = ln  i + (2+ 3) j + 4√

 k ⇒ r0() = (1) i + (2 + 3) j + (2√

 ) k ⇒ r00() = (−12) i + 2 j − (132) k. The point (0 4 4) corresponds to  = 1, where

r0(1) = i + 5 j + 2 k, r00(1) = −i + 2 j − k, and r0(1) × r00(1) = −9 i − j + 7 k. Thus at the point (0 4 4),

= r0(1) · r00(1)

|r0(1)| = −1 + 10 − 2

√1 + 25 + 4 = 7

√30 and  = |r0(1) × r00(1)|

|r0(1)| =

√81 + 1 + 49

√30 =

131 30 .

42. r() = −1i+ −2j+ −3k ⇒ r0() = −−2i− 2−3j− 3−4k ⇒ r00() = 2−3i+ 6−4j+ 12−5k. The point (1 1 1) corresponds to  = 1, where r0(1) = −i − 2 j − 3 k, r00(1) = 2 i + 6 j + 12 k, and

r0(1) × r00(1) = −6 i + 6 j − 2 k. Thus at the point (1 1 1),  = r0(1) · r00(1)

|r0(1)| = −√2 − 12 − 36

1 + 4 + 9 = − 50

√14 and

= |r0(1) × r00(1)|

|r0(1)| =

√36 + 36 + 4

√14 =

76 14 =

38 7 .

43. The tangential component of a is the length of the projection of a onto T, so we sketch the scalar projection of a in the tangential direction to the curve and estimate its length to be 45 (using the fact that a has length 10 as a guide). Similarly, the normal component of ais the length of the projection of a onto N, so we sketch the scalar projection of a in the normal direction to the curve and estimate its length to be 90. Thus  ≈ 45 cms2and

≈ 90 cms2.

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

42. Find the tangential and normal components of the acceleration vector at the given point.

r(t) = 1 ti + 1

t2j + 1

t3k, (1, 1, 1) Solution:

SECTION 13.4 MOTION IN SPACE: VELOCITY AND ACCELERATION ¤ 361 38. r() = 22i+2

33− 2

j ⇒ r0() = 4 i + (22− 2) j,

|r0()| =

162+ (22− 2)2=√

44+ 82+ 4 =

4 (2+ 1)2= 2(2+ 1), r00() = 4 i + 4 j, r0() × r00() = (82+ 8) k. Then Equation 9 gives

= r0() · r00()

|r0()| = (4)(4) + (22− 2)(4)

2(2+ 1) = 8(2+ 1) 2(2+ 1) = 4

or by Equation 8,  = 0= 



2(2+ 1)

= 4

and Equation 10 gives = |r0() × r00()|

|r0()| = 8(2+ 1) 2(2+ 1) = 4.

39. r() = cos  i + sin  j +  k ⇒ r0() = − sin  i + cos  j + k, |r0()| =

sin2 + cos2 + 1 =√2, r00() = − cos  i − sin  j, r0() × r00() = sin  i − cos  j + k.

Then  = r0() · r00()

|r0()| = sin  cos  − sin  cos √

2 = 0 and  = |r0() × r00()|

|r0()| =

sin2 + cos2 + 1

√2 =

√2

√2 = 1.

40. r() =  i + 2j+ 2k ⇒ r0() = i + 2j+ 22k, |r0()| =√

1 + 42+ 44=

(1 + 22)2= 1 + 22, r00() = 2j+ 42k, r0() × r00() = 43i− 42j+ 2k,

|r0() × r00()| =√

166+ 164+ 42 =

42(22+ 1)2 = 2(22+ 1). Then

= r0() · r00()

|r0()| = 42+ 84

1 + 22 = 42(1 + 22)

1 + 22 = 42 and  = |r0() × r00()|

|r0()| = 2(22+ 1) 1 + 22 = 2. 41. r() = ln  i + (2+ 3) j + 4√

 k ⇒ r0() = (1) i + (2 + 3) j + (2√

 ) k ⇒ r00() = (−12) i + 2 j − (132) k. The point (0 4 4) corresponds to  = 1, where

r0(1) = i + 5 j + 2 k, r00(1) = −i + 2 j − k, and r0(1) × r00(1) = −9 i − j + 7 k. Thus at the point (0 4 4),

= r0(1) · r00(1)

|r0(1)| = −1 + 10 − 2

√1 + 25 + 4 = 7

√30 and  = |r0(1) × r00(1)|

|r0(1)| =

√81 + 1 + 49

√30 =

131 30 .

42. r() = −1i+ −2j+ −3k ⇒ r0() = −−2i− 2−3j− 3−4k ⇒ r00() = 2−3i+ 6−4j+ 12−5k. The point (1 1 1) corresponds to  = 1, where r0(1) = −i − 2 j − 3 k, r00(1) = 2 i + 6 j + 12 k, and

r0(1) × r00(1) = −6 i + 6 j − 2 k. Thus at the point (1 1 1),  = r0(1) · r00(1)

|r0(1)| = −√2 − 12 − 36

1 + 4 + 9 = − 50

√14 and

= |r0(1) × r00(1)|

|r0(1)| =

√36 + 36 + 4

√14 =

76 14 =

38 7 .

43. The tangential component of a is the length of the projection of a onto T, so we sketch the scalar projection of a in the tangential direction to the curve and estimate its length to be 45 (using the fact that a has length 10 as a guide). Similarly, the normal component of ais the length of the projection of a onto N, so we sketch the scalar projection of a in the normal direction to the curve and estimate its length to be 90. Thus  ≈ 45 cms2and

≈ 90 cms2.

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

1

參考文獻

相關文件

No credit will be given for an answer without

(12%) Among all planes that are tangent to the surface x 2 yz = 1, are there the ones that are nearest or farthest from the origin?. Find such tangent planes if

[r]

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. All

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. All

To find the osculating plane, we first calculate the unit tangent and normal vectors.. In Maple, we use the VectorCalculus package and set

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience.. Cengage Learning reserves the right to remove additional content

Let p be the probability that a healthy person gets the disease, r be the probability that an infected person recovers in each month.. Suppose there are 8