• 沒有找到結果。

Section 13.3 Arc Length and Curvature 5. Find the length of the curve.

N/A
N/A
Protected

Academic year: 2022

Share "Section 13.3 Arc Length and Curvature 5. Find the length of the curve."

Copied!
2
0
0

加載中.... (立即查看全文)

全文

(1)

Section 13.3 Arc Length and Curvature

5. Find the length of the curve. r(t) =√

2ti + etj + e−tk, 0 ≤ t ≤ 1.

Solution:

SECTION 13.3 ARC LENGTH AND CURVATURE ¤ 335

13.3 Arc Length and Curvature

1. r() =

2 cos √

5  2 sin 

⇒ r0() = 

−2 sin √

5 2 cos 

|r0()| =

(−2 sin )2+√

52

+ (2 cos )2=

4 sin2 + 5 + 4 cos2 =√ 9 = 3.

Then using Formula 3, we have  =2

−23  = 32

−2= 6 − (−6) = 12.

2. r() =

3 6 32

⇒ r0() =

32 6 6

|r0()| =

(32)2+ 62+ (6)2=√

94+ 362+ 36 = 3√

4+ 4 + 4 = 3

(2+ 2)2= 3(2+ 2).

Then using Formula 3, we have  =3

0 3(2+ 2)  =

3+ 63

0= (27 + 18) − (0 + 0) = 45.

3. r() =

2  i + j+ −k ⇒ r0() =√

2 i + j− −k ⇒

|r0()| =√

22

+ ()2+ (−−)2=√

2 + 2+ −2 =

(+ −)2= + − [since + − 0].

Then  =1

0 |r0()|  =1

0(+ −)  =

− −1

0=  − −1. 4. r() = 12 i + 832j+ 32k ⇒ r0() = 12 i + 12√

 j + 6 k ⇒

|r0()| =√

144 + 144 + 362 =

36( + 2)2 = 6 | + 2| = 6( + 2) for 0 ≤  ≤ 1. Then

 =1

0 |r0()|  =1

0 6( + 2)  =

32+ 121 0= 15.

5. r() = i + 2j+ 3k ⇒ r0() = 2 j + 32k ⇒ |r0()| =√

42+ 94 = √

4 + 92 [since  ≥ 0].

Then  =1

0 |r0()|  =1 0 √

4 + 92 = 181 · 23(4 + 92)321

0= 271(1332− 432) = 271(1332− 8).

6. r() = 2i+ 9 j + 432k ⇒ r0() = 2 i + 9 j + 6√

 k ⇒

|r0()| =√

42+ 81 + 36 =

(2 + 9)2= |2 + 9| = 2 + 9 [since 2 + 9 ≥ 0 for 1 ≤  ≤ 4]. Then

 =4

1 |r0()|  =4

1(2 + 9)  =

2+ 94

1= 52 − 10 = 42.

7. r() =

2 3 4

⇒ r0() =

2 32 43

⇒ |r0()| =

(2)2+ (32)2+ (43)2=√

42+ 94+ 166, so

 =2

0 |r0()|  =2 0

√42+ 94+ 166 ≈ 186833.

8. r() =√

  2

⇒ r0() =

 1 2√

 1 2

⇒ |r0()| =

1 2

2

+ 12+ (2)2=

1

4+ 1 + 42, so

 =4

1 |r0()|  =4 1

1

4 + 1 + 42 ≈ 153841.

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

24. (a) Find the unit tangent and unit normal vectors T(t) and N(t).

(b) Use Formula 9 to find the curvature.

r(t) =<√

2t, et, e−t>.

Solution:

338 ¤ CHAPTER 13 VECTOR FUNCTIONS r(()) =

 2

tan21

2

+ 1− 1

i+ 2 tan1

2 tan21

2

+ 1j= 1 − tan21

2 1 + tan21

2 i +2 tan1

2 sec21

2 j

= 1 − tan21 2 sec21

2 i+ 2 tan1 2

cos21 2

j= cos21

2

− sin21 2

i+ 2 sin1 2

cos1 2

j= cos  i + sin  j With this parametrization, we recognize the function as representing the unit circle. Note here that the curve approaches, but does not include, the point (−1 0), since cos  = −1 for  =  + 2 ( an integer) but then  = tan1

2is undefined.

17. (a) r() = h 3 cos  3 sin i ⇒ r0() = h1 −3 sin  3 cos i ⇒ |r0()| =

1 + 9 sin2 + 9 cos2 =√10.

Then T() = r0()

|r0()| = 1

10h1 −3 sin  3 cos i or 1

10 −310sin 3 10cos 

.

T0() = 1

10h0 −3 cos  −3 sin i ⇒ |T0()| = 110

0 + 9 cos2 + 9 sin2 = 3 10. Thus N() = T0()

|T0()|= 1√ 10 3√

10h0 −3 cos  −3 sin i = h0 − cos  − sin i.

(b) () = |T0()|

|r0()| = 3√

√ 10

10 = 3 10 18. (a) r() = 

2 sin  −  cos  cos  +  sin 

r0() = h2 cos  +  sin  − cos , −sin  +  cos  + sin i = h2  sin   cos i ⇒

|r0()| =

42+ 2sin2 + 2cos2 =

42+ 2(cos2 + sin2) =√

52 =√

5  [since   0]. Then T() = r0()

|r0()| = 1

√5 h2  sin   cos i = 15h2 sin  cos i. T0() = 1

5h0 cos  − sin i ⇒

|T0()| = 15

0 + cos2 + sin2 = 15. Thus N() = T0()

|T0()| = 1√ 5 1√

5 h0 cos  − sin i = h0 cos  − sin i.

(b) () = |T0()|

|r0()| = 1√

√ 5

5  = 1 5

19. (a) r() =√

2   −

⇒ r0() =√

2  −−

⇒ |r0()| =√

2 + 2+ −2=

(+ −)2= + −. Then

T() = r0()

|r0()| = 1

+ −

√2  −−

= 1

2+ 1

√2  2 −1 

after multiplying by 

 and

T0() = 1

2+ 1

√2  22 0

− 22

(2+ 1)2

√2  2 −1

= 1

(2+ 1)2

(2+ 1)√

2  22 0

− 22√

2  2 −1

= 1

(2+ 1)2

√2 

1 − 2

 22 22 Then

|T0()| = 1 (2+ 1)2

22(1 − 22+ 4) + 44+ 44= 1 (2+ 1)2

22(1 + 22+ 4)

= 1

(2+ 1)2

22(1 + 2)2=

√2 (1 + 2) (2+ 1)2 =

√2 

2+ 1

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

SECTION 13.3 ARC LENGTH AND CURVATURE ¤ 339

Therefore

N() = T0()

|T0()|= 2+ 1

√2  1 (2+ 1)2

√2 (1 − 2) 22 22

= 1

√2 (2+ 1)

√2 (1 − 2) 22 22

= 1

2+ 1

1 − 2√ 2 √

2 

(b) () = |T0()|

|r0()| =

√2 

2+ 1 · 1

+ − =

√2 

3+ 2+ − =

√2 2

4+ 22+ 1 =

√2 2

(2+ 1)2

20. (a) r() =

122 2

⇒ r0() = h1  2i ⇒ |r0()| =√

1 + 2+ 42 =√

1 + 52. Then

T() = r0()

|r0()| = 1

√1 + 52 h1  2i.

T0() = −5

(1 + 52)32 h1  2i + 1

√1 + 52 h0 1 2i [by Formula 3 of Theorem 13.2.3]

= 1

(1 + 52)32

−5 −52 −102 +

0 1 + 52 2 + 102

= 1

(1 + 52)32 h−5 1 2i

|T0()| = 1 (1 + 52)32

√252+ 1 + 4 = 1 (1 + 52)32

√252+ 5 =

√5√ 52+ 1 (1 + 52)32 =

√5 1 + 52 Thus N() = T0()

|T0()| = 1 + 52

√5 · 1

(1 + 52)32 h−5 1 2i = 1

√5 + 252 h−5 1 2i.

(b) () = |T0()|

|r0()| =

√5(1 + 52)

√1 + 52 =

√5 (1 + 52)32

21. r() = 3j+ 2k ⇒ r0() = 32j+ 2 k, r00() = 6 j + 2 k, |r0()| =

02+ (32)2+ (2)2 =√

94+ 42,

r0() × r00() = −62i, |r0() × r00()| = 62. Then () = |r0() × r00()|

|r0()|3 = 62

√94+ 423 = 62 (94+ 42)32.

22. r() =  i +  j + (1 + 2) k ⇒ r0() = i + j + 2 k, r00() = 2 k, |r0()| =

12+ 12+ (2)2=√ 42+ 2, r0() × r00() = 2 i − 2 j, |r0() × r00()| =√

22+ 22+ 02=√

8 = 2√2.

Then () = |r0() × r00()|

|r0()|3 = 2√

√ 2

42+ 23 = 2√

√ 2 2√

22+ 13 = 1 (22+ 1)32.

23. r() =

6 2i+ 2 j + 23k ⇒ r0() = 2√

6  i + 2 j + 62k, r00() = 2√

6 i + 12 k,

|r0()| =√

242+ 4 + 364 =

4(94+ 62+ 1) =

4(32+ 1)2= 2(32+ 1), r0() × r00() = 24 i − 12√

6 2j− 4√ 6 k,

|r0() × r00()| =√

5762+ 8644+ 96 =

96(94+ 62+ 1) =

96(32+ 1)2= 4√

6 (32+ 1).

Then () = |r0() × r00()|

|r0()|3 = 4√

6 (32+ 1) 8(32+ 1)3 =

√6 2(32+ 1)2.

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

26. Use Theorem 10 to find the curvature. r(t) = ti + t2j + etk Solution:

1300 ¤ CHAPTER 13 VECTOR FUNCTIONS T0() = 1

2+ 1

√2  22 0

− 22

(2+ 1)2

√2  2 −1 [by Formula 3 of Theorem 13.2.3]

= 1

(2+ 1)2

(2+ 1)√

2  22 0

− 22√

2  2 −1

= 1

(2+ 1)2

√2 

1 − 2

 22 22

|T0()| = 1 (2+ 1)2

22(1 − 22+ 4) + 44+ 44= 1 (2+ 1)2

22(1 + 22+ 4)

= 1

(2+ 1)2

22(1 + 2)2=

√2 (1 + 2) (2+ 1)2 =

√2 

2+ 1 Thus, N() = T0()

|T0()| = 2+ 1

√2  1 (2+ 1)2

√2 (1 − 2) 22 22

= 1

√2 (2+ 1)

√2 (1 − 2) 22 22

= 1

2+ 1

1 − 2√ 2 √

2 

(b) By Formula 9, the curvature is

() = |T0()|

|r0()| =

√2 

2+ 1· 1

+ − =

√2 

3+ 2+ − =

√2 2

4+ 22+ 1 =

√2 2

(2+ 1)2. 25. r() = 3j+ 2k ⇒ r0() = 32j+ 2 k, r00() = 6 j + 2 k, |r0()| =

02+ (32)2+ (2)2=√

94+ 42,

r0() × r00() = −62i, |r0() × r00()| = 62. Then () = |r0() × r00()|

|r0()|3 = 62

√94+ 423 = 62 (94+ 42)32.

26. r() =  i + 2j+ k ⇒ r0() = i + 2 j + k, r00() = 2 j + k,

|r0()| =

12+ (2)2+ ()2 =√

1 + 42+ 2, r0() × r00() = (2 − 2)i− j+ 2 k,

|r0() × r00()| =

[(2 − 2)]2+ (−)2+ 22=

(2 − 2)22+ 2+ 4 =

(42− 8 + 5)2+ 4.

Then () = |r0() × r00()|

|r0()|3 =

(42− 8 + 5)2+ 4

√1 + 42+ 23 =

(42− 8 + 5)2+ 4 (1 + 42+ 2)32 .

27. r() =

6 2i+ 2 j + 23k ⇒ r0() = 2√

6  i + 2 j + 62k, r00() = 2√

6 i + 12 k,

|r0()| =√

242+ 4 + 364 =

4(94+ 62+ 1) =

4(32+ 1)2 = 2(32+ 1), r0() × r00() = 24 i − 12√

6 2j− 4√ 6 k,

|r0() × r00()| =√

5762+ 8644+ 96 =

96(94+ 62+ 1) =

96(32+ 1)2= 4√

6 (32+ 1).

Then () = |r0() × r00()|

|r0()|3 = 4√

6 (32+ 1) 8(32+ 1)3 =

√6 2(32+ 1)2. 28. r() =

2 ln   ln 

⇒ r0() = h2 1 1 + ln i, r00() =

2 −12 1. The point (1 0 0) corresponds to  = 1, and r0(1) = h2 1 1i, |r0(1)| =√

22+ 12+ 12=√6, r00(1) = h2 −1 1i, r0(1) × r00(1) = h2 0 −4i,

|r0(1) × r00(1)| =

22+ 02+ (−4)2=√

20 = 2√5. Then (1) = |r0(1) × r00(1)|

|r0(1)|3 = 2√

√ 5

63 = 2√ 5 6√

6 or

√30 18 .

° 2021 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

1

(2)

52. Find the vectors T, N, and B at the given point.

r(t) =< cos t, sin t, ln cos t >, (1, 0, 0).

Solution:

344 ¤ CHAPTER 13 VECTOR FUNCTIONS

44.  =  cos  ⇒ ˙ = − sin  ⇒ ¨ = −2cos ,

 =  sin  ⇒  =  cos ˙ ⇒ ¨ = −2sin . Then

() = | ˙¨ − ˙¨|

[ ˙2+ ˙2]32 =

(− sin )(−2sin ) − ( cos )(−2cos ) [(− sin )2+ ( cos )2]32

=

3sin2 + 3cos2 (22sin2 + 22cos2)32 =

3

(22sin2 + 22cos2)32

45.  = cos  ⇒ ˙ = (cos  − sin ) ⇒ ¨ = (− sin  − cos ) + (cos  − sin ) = −2sin ,

 = sin  ⇒  = ˙ (cos  + sin ) ⇒ ¨ = (− sin  + cos ) + (cos  + sin ) = 2cos . Then

() = | ˙¨ − ˙¨|

[ ˙2+ ˙2]32 =

(cos  − sin )(2cos ) − (cos  + sin )(−2sin ) ([(cos  − sin )]2+ [(cos  + sin )]2)32

=

22(cos2 − sin  cos  + sin  cos  + sin2)

2(cos2 − 2 cos  sin  + sin2 + cos2 + 2 cos  sin  + sin2)32 =

22(1)

[2(1 + 1)]32 = 22

3(2)32 = 1

√2 

46. () = , 0() = , 00() = 2. Using Formula 11 we have

() = |00()|

[1 + (0())2]32 =

2

[1 + ()2]32 = 2

(1 + 22)32 so the curvature at  = 0 is

(0) = 2

(1 + 2)32. To determine the maximum value for (0), let () = 2

(1 + 2)32. Then

0() = 2 · (1 + 2)32− 2·32(1 + 2)12(2)

[(1 + 2)32]2 = (1 + 2)12

2(1 + 2) − 33 (1 + 2)3 =

2 − 3

(1 + 2)52. We have a critical number when 2 − 3 = 0 ⇒ (2 − 2) = 0 ⇒  = 0 or  = ±√

2. 0()is positive for   −√

2, 0   √ 2 and negative elsewhere, so  achieves its maximum value when  =√

2or −√

2. In either case, (0) = 2

332, so the members of the family with the largest value of (0) are () = 2and () = 2.

47.

123 1corresponds to  = 1. T() = r0()

|r0()|=

2 22 1

√42+ 44+ 1 =

2 22 1

22+ 1 , so T(1) =2

32313. T0() = −4(22+ 1)−2

2 22 1

+ (22+ 1)−1h2 4 0i [by Formula 3 of Theorem 13.2.3]

= (22+ 1)−2

−82+ 42+ 2 −83+ 83+ 4 −4

= 2(22+ 1)−2

1 − 22 2 −2

N() = T0()

|T0()| = 2(22+ 1)−2

1 − 22 2 −2 2(22+ 1)−2

(1 − 22)2+ (2)2+ (−2)2 =

1 − 22 2 −2

√1 − 42+ 44+ 82 =

1 − 22 2 −2 1 + 22 N(1) =

1323 −23

and B(1) = T(1) × N(1) =

4929 −

49+ 19

49+29

=

231323 .

48. (1 0 0)corresponds to  = 0. r() = hcos  sin  ln cos i, and in Exercise 4 we found that r0() = h− sin  cos  − tan i and |r0()| = |sec |. Here we can assume −2    2 and then sec   0 ⇒ |r0()| = sec .

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

SECTION 13.3 ARC LENGTH AND CURVATURE ¤ 345 T() = r0()

|r0()| = h−sin  cos  − tan i

sec  =

− sin  cos  cos2 − sin 

and T(0) = h0 1 0i.

T0() = h−[(sin )(− sin ) + (cos )(cos )] 2(cos )(− sin ) − cos i =

sin2 − cos2 −2 sin  cos  − cos , so

N(0) = T0(0)

|T0(0)| = h−√1 0 −1i 1 + 0 + 1 = 1

√2h−1 0 −1i =

12 0 −12 .

Finally, B(0) = T(0) × N(0) = h0 1 0i ×

12 0 −12

=

12 012 .

49. r() = hsin 2 − cos 2 4i ⇒ r0() = h2 cos 2 2 sin 2 4i. The point (0 1 2) corresponds to  = 2, and the normal plane there has normal vector r0(2) = h−2 0 4i. An equation for the normal plane is

−2( − 0) + 0( − 1) + 4( − 2) = 0 or −2 + 4 = 8 or  − 2 = −4.

T() = r0()

|r0()| =  h2 cos 2 2 sin 2 4i 4 cos22 + 4 sin22 + 16

= 1

2√

5h2 cos 2 2 sin 2 4i = 1

√5hcos 2 sin 2 2i ⇒

T0() = 1

5h−2 sin 2 2 cos 2 0i ⇒ |T0()| = 15

4 sin22 + 4 cos22 = 2 5, and N() = T0()

|T0()| = h− sin 2 cos 2 0i. Then T(2) = 15h−1 0 2i, N(2) = h0 −1 0i, and

B(2) = T(2) × N(2) = 15h2 0 1i. Since B(2) is normal to the osculating plane, so is h2 0 1i, and an equation of the plane is 2( − 0) + 0( − 1) + 1( − 2) = 0 or 2 +  = 2.

50. r() =

ln  2 2

⇒ r0() = h1 2 2i. The point (0 2 1) corresponds to  = 1, and the normal plane there has normal vector r0(1) = h1 2 2i. An equation for the normal plane is 1( − 0) + 2( − 2) + 2( − 1) = 0 or

 + 2 + 2 = 6.

|r0()| =

12+ 4 + 42=

[(1) + 2]2= (1) + 2 [since   0] and then

T() = r0()

|r0()| = h1 2 2i

(1) + 2 = 1 1 + 22

1 2 22 

after multiplying by 

. By Formula 3 of Theorem 13.2.3,

T0() = − 4

(1 + 22)2

1 2 22

+ 1

1 + 22 h0 2 4i

= 1

(1 + 22)2

−4 −82+ 2(1 + 22) −83+ 4(1 + 22)

= 1

(1 + 22)2

−4 2 − 42 4

Then

|T0()| = 1 (1 + 22)2

162+ (2 − 42)2+ 162= 1 (1 + 22)2

√162+ 4 + 164

= 1

(1 + 22)2 · 2

(1 + 22)2= 2 1 + 22

and N() = T0()

|T0()| = 1 2(1 + 22)

−4 2 − 42 4

= 1

1 + 22

−2 1 − 22 2 .

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

54. Find equations of the normal plane and osculating plane of the curve at the given point.

x = ln t, y = 2t, z = t2; (0, 2, 1).

Solution:

SECTION 13.3 ARC LENGTH AND CURVATURE ¤ 345 T() = r0()

|r0()| = h−sin  cos  − tan i

sec  =

− sin  cos  cos2 − sin 

and T(0) = h0 1 0i.

T0() = h−[(sin )(− sin ) + (cos )(cos )] 2(cos )(− sin ) − cos i =

sin2 − cos2 −2 sin  cos  − cos , so

N(0) = T0(0)

|T0(0)| = h−√1 0 −1i 1 + 0 + 1 = 1

√2h−1 0 −1i =

12 0 −12 .

Finally, B(0) = T(0) × N(0) = h0 1 0i ×

12 0 −12

=

12 01 2

.

49. r() = hsin 2 − cos 2 4i ⇒ r0() = h2 cos 2 2 sin 2 4i. The point (0 1 2) corresponds to  = 2, and the normal plane there has normal vector r0(2) = h−2 0 4i. An equation for the normal plane is

−2( − 0) + 0( − 1) + 4( − 2) = 0 or −2 + 4 = 8 or  − 2 = −4.

T() = r0()

|r0()| =  h2 cos 2 2 sin 2 4i

4 cos22 + 4 sin22 + 16 = 1 2√

5h2 cos 2 2 sin 2 4i = 1

√5hcos 2 sin 2 2i ⇒

T0() = 1

5h−2 sin 2 2 cos 2 0i ⇒ |T0()| = 15

4 sin22 + 4 cos22 = 2 5, and N() = T0()

|T0()| = h− sin 2 cos 2 0i. Then T(2) = 15h−1 0 2i, N(2) = h0 −1 0i, and

B(2) = T(2) × N(2) = 15h2 0 1i. Since B(2) is normal to the osculating plane, so is h2 0 1i, and an equation of the plane is 2( − 0) + 0( − 1) + 1( − 2) = 0 or 2 +  = 2.

50. r() =

ln  2 2

⇒ r0() = h1 2 2i. The point (0 2 1) corresponds to  = 1, and the normal plane there has normal vector r0(1) = h1 2 2i. An equation for the normal plane is 1( − 0) + 2( − 2) + 2( − 1) = 0 or

 + 2 + 2 = 6.

|r0()| =

12+ 4 + 42=

[(1) + 2]2= (1) + 2 [since   0] and then

T() = r0()

|r0()| = h1 2 2i

(1) + 2 = 1 1 + 22

1 2 22 

after multiplying by 

. By Formula 3 of Theorem 13.2.3,

T0() = − 4

(1 + 22)2

1 2 22

+ 1

1 + 22h0 2 4i

= 1

(1 + 22)2

−4 −82+ 2(1 + 22) −83+ 4(1 + 22)

= 1

(1 + 22)2

−4 2 − 42 4

Then

|T0()| = 1 (1 + 22)2

162+ (2 − 42)2+ 162= 1 (1 + 22)2

√162+ 4 + 164

= 1

(1 + 22)2 · 2

(1 + 22)2= 2 1 + 22

and N() = T0()

|T0()| = 1 2(1 + 22)

−4 2 − 42 4

= 1

1 + 22

−2 1 − 22 2.

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

346 ¤ CHAPTER 13 VECTOR FUNCTIONS

Thus T(1) = 13h1 2 2i, N(1) = 13h−2 −1 2i, and B(1) = T(1) × N(1) = 19h6 −6 3i is normal to the osculating plane.

We can take the parallel vector h2 −2 1i as a normal vector for the plane, so an equation is 2( − 0) − 2( − 2) + 1( − 1) = 0 or 2 − 2 +  = −3.

Note: Since r0(1)is parallel to T(1) and T0(1)is parallel to N(1), we could have taken r0(1) × T0(1)as a normal vector for the plane.

51. The ellipse is given by the parametric equations  = 2 cos ,  = 3 sin , so using the result from Exercise 42,

() = | ˙¨ − ¨ ˙|

[ ˙2+ ˙2]32 = |(−2 sin )(−3 sin ) − (3 cos )(−2 cos )|

(4 sin2 + 9 cos2)32 = 6

(4 sin2 + 9 cos2)32. At (2 0),  = 0. Now (0) =276 = 29, so the radius of the osculating circle is

1(0) =92 and its center is

52 0. Its equation is therefore

 +522

+ 2= 814. At (0 3),  = 2, and 

2

= 68 = 34. So the radius of the osculating circle is43 and

its center is

053. Hence its equation is 2+

 −53

2

= 169.

52.  = 122 ⇒ 0= and 00= 1, so Formula 11 gives () = 1

(1 + 2)32. So the curvature at (0 0) is (0) = 1 and the osculating circle has radius 1 and center (0 1), and hence equation 2+ ( − 1)2= 1. The curvature at

112 is (1) = 1

(1 + 12)32 = 1 2√

2. The tangent line to the parabola at 112 has slope 1, so the normal line has slope −1. Thus the center of the osculating circle lies in the direction of the unit vector

121 2

.

The circle has radius 2√2, so its center has position vector

112 + 2√

2

1212

=

−152

. So the equation of the circle

is ( + 1)2+

 −52

2

= 8.

53. Here r() =

3 3 4, and r0() =

32 3 43is normal to the normal plane for any . The given plane has normal vector h6 6 −8i, and the planes are parallel when their normal vectors are parallel. Thus we need to find a value for  where

32 3 43

=  h6 6 −8i for some  6= 0. From the -component we see that  = 12, and

32 3 43

= 12h6 6 −8i = h3 3 −4i for  = −1. Thus the planes are parallel at the point (−1 −3 1).

54. To find the osculating plane, we first calculate the unit tangent and normal vectors.

In Maple, we use the VectorCalculus package and set r:= tˆ3,3*t,tˆ4;. After differentiating, the Normalize command converts the tangent vector to the unit tangent vector: T:=Normalize(diff(r,t));. After

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

2

參考文獻

相關文件

After zooming in, the surface and the tangent plane become almost indistinguishable, as shown in the second graph.. (Here, the tangent plane is above the surface.) If we zoom

(2 pts) There is no absolute maximum value since the x-coordinate (or z-coordinate) of the point on L can be arbitrary large.. (3 pts) There is no absolute maximum value since

The first equation gives  = −1, but this does not satisfy the other equations, so the particles do not collide.. All

固的-46 Set up an integral 伽t represents the length of the part of the parametric curve shown in the graph.. Then use a calculator (or computer) to find the length co叮ect to

CrossProduct(a,b) command; in Mathematica, use Cross[a,b].) The graph shows 6 local (or absolute) maximum points for 0 ≤  ≤ 2, as observed in part

CrossProduct(a,b) command; in Mathematica, use Cross[a,b].) The graph shows 6 local (or absolute) maximum points for 0 ≤  ≤ 2, as observed in part

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. All

When recording live performances , sound engineers often use a microphone with a cardioid pickup pattern because it suppresses noise from the audience.. The musicians want to know