• 沒有找到結果。

關於規則網路的支配問題之研究(I)

N/A
N/A
Protected

Academic year: 2021

Share "關於規則網路的支配問題之研究(I)"

Copied!
10
0
0

加載中.... (立即查看全文)

全文

(1)

行政院國家科學委員會專題研究計畫 期中進度報告

關於規則網路的支配問題之研究(1/3)

計畫類別: 個別型計畫

計畫編號: NSC91-2213-E-011-044-

執行期間: 91 年 08 月 01 日至 92 年 07 月 31 日 執行單位: 國立臺灣科技大學資訊管理系

計畫主持人: 王有禮

計畫參與人員: 王福星、張世傑、林家德、劉志強

報告類型: 精簡報告

處理方式: 本計畫可公開查詢

中 華 民 國 92 年 5 月 19 日

(2)

行政院國家科學委員會專題研究計劃期中進度報告 關於規則網路的支配問題之研究

A Study on Domination in Regular Networks 計劃編號:NSC 91-2213-E-011-044

執行期限:91 年 8 月 1 日至 92 年 7 月 31 日

一、 中英文摘要

(一) 中文摘要

在分散式系統中,為了要讓所有的處理器,都能在一個單位時間內,獲得相 同的資料,因此資料必須被以分散的方式儲存在一些資料伺服器中,而儲存資料 的資料伺服器之選擇,即為支配集合(minimum dominating set)。另外,倘若將資 料伺服器本身,其資料有可能遺失,而須由其他儲存備份資料之相鄰資料伺服器 所支配的因素,也予以考慮,則此問題即所謂的最小完全支配集合(minimum total dominating set)問題。由此可見,研究最小支配集合及最小完全支配集合,有其 符合實務需求的必要性。在本計劃中,我們將探討互連網路,連線方式較為規則 的幾個網路拓樸,其中包括有超立方圖(hypercube)、星狀網路(star networks) 、 分割星狀網路(split-stars) 及交替群(alternating group)… 等等。在此,我們將上述 之網路拓樸統稱為規則網路(regular networks)。在本研究計劃的第一年,我們不 但已深入了解規則網路的一些特性,並探討其最小支配集合之性質,同時亦求得 決定該集合的有效率之演算法。

關鍵詞:支配集合,完全支配集合,互連網路,分散式系統。

(二) 計畫英文摘要

In a distributed system, the copies of data are always stored on nodes of a dominating set. In this way, the other nodes can receive the data within one unit of transmission time. Suppose one node in a dominating set gets lost its original data, there should be a neighbor from which the node can request a replica. This issue is concerned with the total dominating set of a network. Therefore, the study on minimum dominating set and minimum total dominating set is especially important.

In this study, several network topologies, called regular networks, are discussed.

Regular networks consist of hypercube, star networks, split-stars and alternating groups, … etc. During the first year of the study, we surveyed the characteristics of the regular networks for the purpose of exploring the properties of the minimum

dominating set in such networks.

Keywor ds: Dominating set, Total domination set, Interconnection network,

Distributed system.

(3)

二、前言與研究目的

規則網路在網路拓撲的領域,一直被廣泛地運用,其主要因素是規則網路具 有以下共同之特微:(1) 連線的規則性; (2) 易於擴充,甚至具備遞迴成長的特 性; (3) 強固性,具有高度的點或線之容錯能力 [1,2,16-21]。相對地,資料在 規則網路上的傳輸,在時效性的要求上也非常高。因此,如何將實務應用的問題,

另以圖論的模式來定義,並配合有效之演算法來解決,是迫切地需要。

關於支配問題以及相關的研究,無論是在理論或是實務上之應用,一直廣受 討論。我們在規則網路中做此一研究,植基於下列緣由:(1) 如何選擇適當節點,

作為伺服器或為分散式的目錄服務,以確保各個節點之間在有限的存取次數下,

獲得所有之資料;(2) 為避免因資源需求的過程,而產生死結的現象,我們欲尋 求能去除死結的最小節點集合;(3)結合支配問題的觀念及最短路徑之要求,決 定最小的最短路徑支配集合有其重要性。

我們以星狀圖為例來描述相關之支配問題。圖一是維度為四的星狀圖,每一 個節點有著個別不同的編號,如果我們取每項編號的第一個數字為 1 者,所形成 的節點集合{1234, 1243, 1324, 1342, 1423, 1432},即為一個最小支配集合;而集 合{1234, 1324, 4231, 4321, 3412, 3142, 2413, 2143}為一完全支配集合。

2134 3124 3214

2314 1234

1324

2431 3421 3241

2341 4231

2134

1432 4132 4312

1342 3412

3142

1423 4123 4213

1243 2413

2143 c

b

d

d

c

a a

b

圖一、星狀圖

目前已有不少的文獻,對於規則網路之支配相關問題予以探討。例如,Slater [57,58] 提出支配集應用於行動網路在繞送資料方面的儲存。最近,有 Jia [36] 等 人提出一個分散式的演算法以建立小的支配集。而對於回饋節點集合(Feedback vertex set )之研究,在一些規則網路上如 meshes [49], tori [49], butterflies [49]及 hypercubes [27] 多有討論,且持續有更新的結果被建立。至於最短路徑支配集

合,則是始於去年才被熱烈地探討。我們以圖二為例,

(4)

a

b c

d e

圖二

圖二恰有三個最短路徑支配集合,分別為 D1 = {a, b, e},D2 = {a, c, d} 及 D3 = {a,

d, e}。因為 D

1是最短路徑支配集合中唯一含有節點

b

者,則我們稱其強迫數為

f

(

D

1) = 1。同樣地,

D

2是最短路徑支配集合中唯一含有節點

c

者,所以,

f

(

D

2) = 1。

然而

D

3 中,因為

D

3 的每一個節點都出現在其他的最短路徑支配集合中,因此,

f

(

D

3) 比 2 大。又因

D

3是最短路徑支配集合中唯一含有節點子集合 {

d, e

}者,所以,

f

(

D

3) = 2。所以, 圖二的最小強迫數是 1 ,最大強迫數是 2。

二、 研究方法與結果

本計劃計分三年執行,目前係為第一年執行階段。針對規則網路,我們計已 提出:(1) directed split-stars 之支配集合的唯一性; (2) undirected star graphs 的 回饋節點集合之最小性; (3) meshes, tori 及 complete n-parite graphs 的最短路徑 支配集之強迫性等,上述三項之期中成效。

首先,我們介紹 directed split-stars 的支配集問題。directed split stars 是新興 的網路的拓樸由 Eddie Cheng [19] 等人提出,此架構係源自 star graphs 及 Alternating Group Graphs,規則網路 directed split-stars 具有遞迴的擴充性,並具 有最大的節點容錯能力與邊容錯能力 [18,21],我們在本計劃的第一年,按著預 定的執行進度之規劃,深入探討 directed split-stars 此一拓樸,依據其連線及其節 點的分支度之特性,予以證明 directed split-stars 具有唯一的一組最小支配集合之 性質。接著,我們更進一步發現,當我們將距離測度由原來的一步增至兩步時,

其唯一性的特性依然存在。而此一結果非常有利我們在眾多的節點中,能夠確切 地指出其最小支配集合之所在。但是,在現實的運作上,因為各節點均無法測知 整個網路的架構,而僅知其週遭相鄰的節點而已,所以對於分散式環境之需求是 很嚴苛。於是,我們提出一個決定 directed split-stars 之最小支配集合的分散式演 算法,以順利滿足此一需求。

在期中進度結果的第二部分,我們在另一規則網路 star graphs 上,提出-演 算法,以用來決定一小的回饋節點集合。在本研究中,我們先探討了此問題在其 他圖形上的相關研究,我們了解到由於規則網路的圖形,雖然具有相當規則的特 性,但是,相對地,規則網路的圖形所含有的迴圈(cycle)卻變得複雜且難以掌控。

(5)

在過去的文獻,對於 meshes, tori, butterflies 及 hypercubes 雖然都有不錯的研究結 果,但是,卻都僅止提出回饋節點集合的大小之上、下限,而未能決定其最小值。

不過幸運地,在許多學者的努力下,相關的結果推陳出新,且愈具接近理想之最 小值。另外,在 star graphs 上,儘管該規則網路具備許多優越的特性 [66],但卻 未見有針對此問題進行廣泛性研究之相關文獻。因此,在本研究中,我們對於 star graphs 提出一個以求解其支配集合的方法為基礎之演算法,運用 star graphs 之遞迴的特徵,使得所決定出來之回饋節點集合,在維度為四的 star graphs 上係 為最佳的值。同時,我們亦証明了此集合的大小之上、下限是嚴謹的。

本研究的第三項成果,即將之前在規則網路中求解支配集合的經驗,再進一 步深入地推廣、應用在求解所謂的最短距離支配問題於規則網路。我們因此而得 到包括 meshes, tori 及 complete n-partite graphs 等相關之結果。另外,我們亦分別 決定出上述圖形之最短距離支配集合的大小,並藉以探討此集合的強迫性參數,

在本研究中我們已求出此集合之個別的最小強迫數及最大強迫數。

四、討論

Ø 本研究針對一個新的網路拓樸:directed split-stars,求出其支配集合之唯一 性,而此項結果有利於解決其他的圖論參數 [32, 33],如 bondage number [25, 64] 等。我們並且在本研究的第一年,更進一步地提出決定此集合之分散式 演算法。此一初步成果即符合本計劃之預期,也帶給我們爾後兩年的接續研 究及一個明確可行的方向。因此,我們急於獲知的是,對於其他的眾多規則 網路裡,有哪些規則網路亦具有最小支配集合之唯一性?有鑒於最小支配集 合之唯一性在實際應用上的重要性,本計劃將在後續兩年的執行過程,繼而 做更為深入且廣泛地探討。

Ø 對於 star graphs 的支配集合之研究,我們參閱過去的文獻,尚未有相關的成 果。在本研究中,我們將其列為討論的另一重點。我們運用 star graphs 的支 配集合,去求解最小回饋節點集合之上、下限。而此項結果屬本計劃之另一 萌芽研究,我們預備再深入其有關的研討,並將此項成果再予以發揚光大。

Ø 最短路徑支配問題,在去年的文獻中,有學者 Zhang [67] 提出了相關的強

迫性觀念,其中文獻裡導入了最大強迫最短路徑支配參數。我們在此研究 裡,相對地提出最短路徑支配集合之最小強迫參數,並且也獲得了預期的成 效,因此,我們預計在其他相關規則網路的研究能將此項結果更為擴大。

五、計劃成果

本研究之部分結果已發表於第二十屆組合數學與計算理論研討會,並已投寄 國際學術期刊 Information Processing Letters。

(6)

六、參考文獻

[1] S. B. Akers, D. Harel and B. Kirshnamurthy, The star graph: An attractive alternative to the n-cube, in: Proceedings of the International Conference on Parallel Processing, St. Charles, Illinois, pp. 393–400, 1987.

[2] S. B. Akers and B. Kirshnamurthy, A group-theoretic model for symmetric interconnection networks, IEEE Transactions on Computers, Vol. 38 (4), pp.

555–565, 1989.

[3] S. Arumugam and R. Kala, Domination parameters of star graph, Ars Combinatoria, Vol. 44, pp. 93–96, 1996.

[4] R.B. Allan and R. Laskar, On domination and independent domination number of a graph, Discrete Mathematics, Vol. 23, pp. 73–76, 1978.

[5] V. Bafna, P. Berman and T. Fujito, Constant ratio approximations of the weighted feedback vertex set problem, in: Proceedings of the 6th International Symposium on Algorithms and Computation (ISAAC95),in: Lecture Notes in Computer Science, Vol. 1004, Springer, Berlin, 1995, pp. 142–151.

[6] V. Bafna, P. Berman and T. Fujito, A 2-approximation algorithm for the

undirected feedback vertex set problem, SIAM Journal on Discrete Mathematics , Vol. 12 (3), pp. 289–297, 1999.

[7] J. Bar-Ilan, G. Kortsarz and D. Peleg, How to allocate network centers, Journal of Algorithms, Vol. 15, pp.385–415, 1993.

[8] A.E. Barkauskas and L.H. Host, Finding efficient dominating sets in oriented graphs, Congr. Numer., Vol. 98, pp.27–32, 1993.

[9] R. Bar-Yehuda and U. Vishkin, Complexity of finding k-path-free dominating sets in graphs, Inform. Process. Lett., Vol. 14, pp.228–232, 1982.

[10] R. Bar-Yehuda, D. Geiger, J.S. Naor and R.M. Roth, Approximation algorithms for the feedback vertex set problem with applications to constraint satisfaction and Bayesian inference, SIAM Journal on Computing, Vol. 27 (4), pp. 942–959, 1998.

[11] C. Berge and A.R. Rao, A combinatorial problem in logic, Discrete Mathematics, Vol. 17, pp.23–26, 1977.

[12] J.A. Bondy and A. Vince, Cycles in a graph whose lengths differ by one or two, Journal of Graph Theory, Vol. 27 (1), pp.11–15, 1998.

[13] F. Buckley and F. Harary, Distance in Graphs, Addison-Wesley, 1990.

[14] I. Caragiannis, C. Kaklamanis, and P. Kanellopoulos, New bounds on the size of the minimum feedback vertex set in meshes and butterflies, Information

Processing Letters, Vol. 83, pp. 275–280, 2002.

[15] G. Chaty and J.L. Szwarcfiter, Enumerating the kernels of a directed graph with no odd circuits, Information Processing Letters, Vol. 51, pp. 149–153, 1994.

(7)

[16] Eddie Cheng and Marc J. Lipman, Orienting split-stars and alternating group graphs, Networks, Vol. 35, pp.139–144, 2000.

[17] Eddie Cheng and Marc J. Lipman, Increasing the connectivity of split-stars, Congressus Numerantium, Vol. 146, pp.97–111, 2000.

[18] Eddie Cheng, Marc J. Lipman and Hyungju Park, Super connectivity of star graphs and split-stars, Ars Combinatoria, Vol. 52, pp.107–116, 2001.

[19] Eddie Cheng, Marc J. Lipman and H. A. Park, An attractive variation of the star graphs: split-stars, Technical Report No. 98-3, Oakland University, 1998.

[20] Eddie Cheng and Marc J. Lipman, Disjoint paths in split-stars, Congressus Numerantium, Vol. 139, pp.21–32, 1999.

[21] Eddie Cheng and Marc J. Lipman, Fault tolerant routing in split-stars and alternating group graphs, Congressus Numerantium, Vol. 137, pp.47–63, 1999.

[22] E.J. Cockayne, S.T. Hedetniemi and D.J. Miller, Properties of hereditary hypergraphs and middle graphs, Canad. Math. Bull., Vol. 21, pp.461–468, 1978.

[23] Camil Demetrescu and Irene Finocchi, Combinatorial algorithms for feedback problems in directed graphs, Information Processing Letters, Vol. 86, pp. 129–136, 2003.

[24] K. Day and A. Tripathi, A comparative study of topological properties of hypercubes and star graphs, IEEE Transactions on Parallel and Distributed Systems, Vol. 5, pp.31–38, 1994.

[25] J.F. Fink, M.S. Jacobson, L.F. Kinch and J. Roberts, The bondage number of a graph, Discrete Mathematics, Vol. 86, pp.47–57, 1990.

[26] D.Fisher, J.R. Lundgren, S.K. Merz and K.B. Reid, Domination graphs of tournaments and digraphs, Congr. Numer., Vol. 108, pp.97–107, 1995.

[27] R. Focardi, F.L. Luccio and D. Peleg, Feedback vertex set in hypercubes, Information Processing Letters, Vol. 76 (1-2), pp. 1–5, 2000.

[28] T. Gallai, ¨ Uber extreme punkt-und kantenmengen, Ann. Univ. Sci. Budapest, Eotvos Sect. Math., Vol. 2, pp. 133–138, 1959.

[29] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-completeness, Freeman, San Francisco, 1979.

[30] F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1969.

[31] F. Harary and M. Livingston, Independent domination in hypercubes, Applied Mathematics Letters, Vol. 6 (3), pp. 27–28, 1993.

[32] T. W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.

[33] T. W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics, Marcel Dekker, New York, 1998.

[34] D.S. Hochbaum, Approximations Algorithms for NP-Hard Problems, Thomson

(8)

Publishing Company, 1997.

[35] J. B. Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications, Springer-Verlag, London, 2001.

[36] L. Jia, R. Rajaraman and T. Suel, An efficient distributed algorithm for

constructing small dominating sets, Distributed Computing, Vol. 15, pp.193-205, 2002.

[37] Z. Jovanovi´c and J. Misic, Fault tolerance of the star graph interconnection network, Information Processing Letters, Vol 49, pp. 145–150, 1994.

[38] J.S. Jwo, S. Lakshmivarahan, and S.K. Dhall, Embedding of cycles and grids in star graphs , Journal of Circuits Syst. Comput., Vol. 1, pp. 43–74, 1991.

[39] Y. Kikuchi and Y. Shibata, On the domination numbers of generalized de Bruijn digraphs and generalized Kautz digraphs, in: Proceedings of the 7thAnnual International Conference, COCOON, March 2001, in: Lecture Notes in Computer Science, Vol. 2108, Springer, Berlin, 2001, pp. 400–408.

[40] Y. Kikuchi and Y. Shibata, On the domination numbers of generalized de Bruijn digraphs and generalized Kautz digraphs, Information Processing Letters, Vol. 86, pp. 79–85, 2003.

[41] F.T. Leighton, Introduction to Algorithms and Architectures:

Arrays· Trees· Hypercubes, Morgen Kaufmann, 1992.

[42] A. Lempel and I. Cederbaum, Minimum feedback arc and vertex sets of a directed graph, IEEE Trans. Circuit Theory, Vol. 13, (4) pp. 399–403, 1966.

[43] Y.D. Liang, On the feedback vertex set problem in permutation graphs, Information Processing Letters, Vol. 52, pp. 123–129, 1994.

[44] Y.D. Liang and M.S. Chang, Minimum feedback vertex set in cocomparaibility and convex bipartite graphs, Acta Informatica, Vol. 34, pp. 337–346, 1997.

[45] B. Liang and Z. Haas, Virtual backbone generationand mainteance in ad hoc network mobility management, in: Proceedings of the 2000 IEEE INFOCOM, March 2000.

[46] M. Livingston and Q. F. Stout, Distributing resources in hypercube computers, in:

Proceedings of the 3rd Conference on Hypercube Concurrent Computers and Applications, ACM, pp. 222-231, 1988.

[47] M. Livingston and Q. F. Stout, Perfect dominating sets, Congressus Numerantium, Vol. 79, pp. 187–203, 1990.

[48] C.L. Lu and C.Y. Tang, A linear-time algorithm for the weighted feedback vertex problem on interval graphs, Information Processing Letters, Vol. 61 (2), pp.

107–111, 1997.

[49] Flaminia L. Luccio, Almost exact minimum feedback vertex set in meshes and butterflies, Information Processing Letters, Vol. 66, pp. 59–64, 1998.

(9)

[50] J. D. Masters, Q. F. Stout and D. M. Van Wieren, Unique domination in cross-product graphs, Congressus Numerantium, Vol. 118, pp. 49–71, 1996.

[51] N. Megiddo and U. Vishkin, On finding a minimum dominating set in a tournament, Theoret. Comput. Sci., Vol. 61, pp. 307–316, 1994.

[52] A. Menn and A. K. Somani, An efficient sorting algorithm for the star graph interconnection network, in: Proceedings of the International Conference on Parallel Processing, St. Charles, Illinois, pp. 1–8, 1990.

[53] J. von Neumann and O. Morgenstern, Theory of Games and Economic Behaviour, Princeton University Press, Princeton, 1944.

[54] D. Peleg, Distributed data structures: A complexity oriented view, in:

Proceedings of the Fourth International Workshop on Distributed Algorithms, Bari, Italy, pp. 71–89, 1990.

[55] A. Shamir, A linear time algorithm for finding minimum cutsets in reducible graphs, SIAM Journal on Computing, Vol. 8 (4), pp. 645–655, 1979.

[56] A. Silberschatz, P.B. Galvin, and G. Gagne, Operating Systems Concepts, Sixth Edition, Wiley, 2002.

[57] P.J. Slater, R-domination in graphs, Journal of the ACM, Vol. 23, pp.446–450, 1976.

[58] P.J. Slater, Domination and location in acyclic graphs, Networks, Vol. 17, pp.55–64, 1987.

[59] U. Teschner, New results about the bondage number of a graph, Discrete Mathematics, Vol. 171, pp.249–259, 1997.

[60] C. Wang, E.L. Lloyd, and M.L. Sofra, Feedback vertex sets and cyclically reducible graphs, Journal of the ACM, Vol. 32 (2), pp. 296–313, 1985.

[61] F.H. Wang, Y.L. Wang and J.M. Chang, Feedback vertex sets in star graphs, International Computer Symposium, Hualien, Taiwan, 2002.

[62] F.H. Wang, J.M. Chang, Y.L. Wang and S.J. Huang, Distributed algorithms for finding the unique minimum distance dominating set in directed split-stars, Journal of Distributed and Computing, Vol. 63 (4), pp. 481–487, 2003.

[63] F.H.Wang, J.M. Chang and Y.L.Wang, The upper forcing geodetic number of graphs, in: Proceedings of the 20th Workshop on Combinatorial Mathematics and Computation Theory , Chiayi, Taiwan, 2003.

[64] Y.L. Wang, On the bondage number of a graph, Discrete Mathematics, Vol. 159, pp.291–294, 1996.

[65] P.M. Weichsel, Dominating sets in n-cubes, Journal of Graph Theory, Vol. 18 (5), pp. 479–488, 1994.

[66] J. Xu, Topological Structure and Analysis of Interconnection networks, Kluwer Academic, London, 2001.

(10)

[67] Ping Zhang, The upper forcing geodetic number of a graph, Ars Combinatoria, Vol. 62, pp.3-15, 2002.

參考文獻

相關文件

Proceedings of the 19th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval pp.298-306.. Automatic Classification Using Supervised

A dual coordinate descent method for large-scale linear SVM. In Proceedings of the Twenty Fifth International Conference on Machine Learning

Ramesh: An algorithm for generating all spann ing trees of directed graphs, Proceedings of the Workshop on Algorithms an d Data Structures, LNCS, Vol.. Ramesh: Algorithms for

Mehrotra, “Content-based image retrieval with relevance feedback in MARS,” In Proceedings of IEEE International Conference on Image Processing ’97. Chakrabarti, “Query

in Proceedings of the 20th International Conference on Very Large Data

Lange, “An Object-Oriented Design Method for Hypermedia Information Systems”, Proceedings of the Twenty-seventh annual Hawaii International Conference on System Sciences, 1994,

[23] Tiantong You, Hossam Hassanein and Chi-Hsiang Yeh, “PIDC - Towards an Ideal MAC Protocol for Multi-hop Wireless LANs,” Proceedings of the IEEE International Conference

C., “Robust and Efficient Algorithm for Optical Flow Computation,” Proceeding of IEEE International Conference on Computer Vision, pp. “Determining Optical Flow.” Artificial