• 沒有找到結果。

牽引力對軌道絕緣接頭處接觸應力變化之影響

N/A
N/A
Protected

Academic year: 2021

Share "牽引力對軌道絕緣接頭處接觸應力變化之影響"

Copied!
6
0
0

加載中.... (立即查看全文)

全文

(1)

஝͔˧၆࢖྽඗ቡତᐝ఍ତᛈᑕ˧ត̼̝ᇆᜩ

ౘ݌Б! ౘϲ͛! ڒࡌᖳ! ౘ݌Ꮮ

ލڌࡊԫ̂ጯ֘ዃ̍඀ր

ၡ! ࢋ

ώ͛͹ࢋߏӀϡѣࢨ̮৵ڱ̶ֽژଣ੅Ă஝͔˧၆࢖྽඗ቡତᐝ఍ତᛈᑕ

˧ត̼̝ᇆᜩĄ̶ژॡĂଳϡ˟ჯπࢬᑕតሀݭĂ዇࢖ม̝ତᛈߏӀϡତᛈ̮

৵ֽሀᑢĄଣ੅̙Т዇࢖ତᛈ෼ᗓ̈́඗ቡͯՄኳĂ၆዇࢖ତᛈᑕ˧ಞត̼̝ᇆ ᜩĄ̶ژඕڍពϯĂ዇࢖มᑕ˧ಞ̶̝ҶĂځពצ࢖྽඗ቡତᐝ̈́஝͔˧̝ᇆ ᜩĄ༊ତᛈ෼ᗓ̈ٺ2.5 ࢺ Hertz ତᛈܜޘ̝ΗॡĂᄿਬତᛈநኢ૟̙Гዋϡ

࢖྽඗ቡତᐝ఍̝ତᛈᑕ˧̶ژĄ౵̂ગᑕ˧̝౵̂ࣃĂົᐌ඾዇࢖ତᛈᕇତ ܕIRJ ҃ᆧΐĄΩγĂֹϡᇅّሀᇴྵ̝̈඗ቡͯՄኳĂт PTFEăNylon 66Ă

༊዇࢖ତᛈᕇତܕIRJ ॡĂ׎౵̂ગᑕ˧౵̂ࣃ̝Ҝཉ˵ົـ࢖྽ࢬܑࢬொજĄ ᙯᔣෟĈ඗ቡତᐝă஝͔˧ăତᛈ෼ᗓăତᛈᑕ˧Ą

EFFECTS OF TRACTIVE FORCE ON THE WHEEL-RAIL CONTACT STRESS DISTRIBUTION NEAR THE INSULATED RAIL JOINT

Yung-Chuan Chen Li-Wen Chen Chiu- Feng Lin Yung-Yu Chen

Department of Vehicle Engineering

National Pingtung University of Science and Technology Pingtung, Taiwan 912, R.O.C.

Key Words: insulated rail joint, tractive force, contact distance, contact stress.

ABSTRACT

In this investigation, the effect of tractive force on the wheel-rail

contact stress near the insulated rail joint (IRJ) was studied using the finite

element method. Contact elements were used to simulate the interaction

between a wheel and a rail. A two-dimensional plane strain model was

used in this study. Numerical simulations were used to explore the effects

of contact distances and materials used to build end posts on the maximum

shear stress distribution in the rail. Numerical results show that the

presence of IRJ and tractive force might significantly affect wheel-rail

contact stress distributions. Results also indicate that the Hertz contact

theory is no longer useful to predict the contact stress if the contact

distance is less than 2.5 times the half Hertz contact length. The maximum

value of maximum shear stress in the rail increases as the contact point

nears the IRJ . A lower Young’s modulus material end post, e.g. PTFE and

Nylon 66, may result in the location of the maximum value of maximum

shear stress moving to the rail surface as the contact point nears the IRJ.

(2)

˘ă݈ ֏

ܜங᐀࢖(continuously welded rail)̏జᇃھ۞ֹϡд ன΃ଥྻ̝࢖྽ր௚˯Ăҭࠎ੨Ъཱིᄫր௚ҋજЕ֘ଠט (ATC)̝҂ณĂેҖЕ֘ઍീ̈́ᕝ࢖ઍീඈΑਕĂЯѩ࢖

྽ր௚υื̚ᕝ঻΍˘มᅩ(gap)ĂГӀϡ඗ቡତᐝֽડ̶

࢖྽ડมĂٙͽົౄј࢖྽̝̙ాᜈĄ׎࿰঻̝ତᓀ̂ࡗ 5-6mmĂ൒ޢГͽ඗ቡՄኳщ྅д࿰঻̝ତᓀ̰Ăၹјٙ

Ꮬ࢖྽඗ቡତᐝ IRJ (insulated rail joint)ĄЯѩ IRJ ૟Җ֘

࢖ֶౕ๫ᅮՐ̶јዋ༊ܜޘ̝࢖྽߱ĂՏ˘࢖྽߱ӈၹј

˘ౕ๫ડม(block)ĂϡͽઍീЕ֘̈́ᕝ࢖Ą၁ᅫᒉྻពϯĂ

࢖྽ତᐝ఍૱ߏ࢖྽᎐ຫ̈́ຫᗼ౵ᚑࢦ۞г͞Ąඕڍౄј

࢖྽̙πፋޘ̝ᆧΐĂᇆᜩॠމࢷळ̝නዋّĄCox ̈́ Kerr [1]̝ࡁտ޽΍Ă༊Е֘གྷ࿅඗ቡତᐝॡĂ૱ົౄј࢖྽඗

ቡତᐝܢܕડા̝ຫᗼĂЯѩౄј࢖྽ჯ࣒̝෱ϡ̝ᆧ ΐĄ࢖྽඗ቡତᐝ˘ਠߏϤ౦ԍڕ(fishplate)ă඗ቡͯ(end post)ͽ̈́඗ቡᆸ(insulating layer)ᄃᓲংඈٙၹјĄώ̝͛

ࡁտنர౦ԍڕ̝ᇆᜩĂ͹ࢋߏଣ੅඗ቡͯՄኳ၆዇࢖ତ ᛈᑕ˧ಞត̼̝ᇆᜩĄ

ଥྻ֘ዃϤٺื੨Ъཱིᄫր௚үిޘአፋĂЯѩ໶֘

̈́ΐిᐛᓄĄ͛ᚥ˯ѣᙯ඗ቡତᐝ̝ଣ੅࠹༊͌ĂCox ̈́ Kerr[1]അଣ੅࢖྽඗ቡତᐝٚצݬШ࢑ྶॡ̝តԛଐԛĂ ඕڍ֭ᄃ՟ѣ඗ቡତᐝ̝࢖྽ͧྵĂᙋ၁ѣ඗ቡତᐝ̝࢖

྽дତᐝ఍׎តԛྵ̂Ăͷٚצᝈ৏۞ਕ˧ྵमĄChen ̈́ Kuang[2]ଣ੅࢖྽඗ቡତᐝ၆዇࢖ତᛈᑕ˧ត̼̝ᇆᜩĂ

̶ژॡ̙҂ᇋ዇࢖ม̝ᇝᑡܼᇴĄࡁտពϯĂ዇࢖มତᛈ ᑕ˧̶̝Ҷצ࢖྽඗ቡତᐝ̝ᇆᜩ࠹༊̂ĄHertz ତᛈநኢ [3] ҋ 1882 ѐజ೩΍ޢĂಶᇃھ۞జᑕϡдЧ჌ତᛈ̝ય ᗟ˯ĄҭߏHertz ତᛈநኢ̙֭҂ᇋ׌ତᛈۏវม̝ᇝᑡ

ܼᇴĂͷՄफ़ߏቢᇅّሀёĄᔵ൒Hertz ତᛈநኢΞͽ႕

֖̂ొЊ၁ᅫ̝ତᛈયᗟĂҭᔘߏѣొЊ۞ତᛈયᗟĂ Hertz ତᛈநኢ൑ڱ႕֖Ă዇࢖̝ତᛈಶߏ׎̝̚˘Ąᔵ൒

ѣᙯ዇࢖มᇝᑡତᛈયᗟ̝ࡁտ࠹༊к[4-15]Ăҭߏѣֱࡁ տ̶ژॡ[4-8]Ă઄న࢖྽ࢬٚצநኢ Hertz ତᛈᑅ˧Ă҃

̷ቢତᛈᑅ˧݋઄నᄃݬШᑅ˧ј̶ּͧҶĄొЊࡁտ [9-15]݋ߏӀϡ዇࢖̝ତᛈሀݭֽሀᑢ዇࢖ม̝ତᛈĂ࢑ྶ

݋ߏүϡٺ዇͕̄̚Ąҭߏѣᙯ࢖྽඗ቡତᐝܢܕĂ஝͔

˧̈́඗ቡͯՄኳ၆዇࢖ତᛈᑕ˧ಞ̶Ҷត̼̝ᇆᜩĂ͛ᚥ إ൑࠹ᙯྤफ़Ą

၁ᅫ˯Ăд዇࢖ତᛈડા఼̰૱ົѣᕆ႖ડ(stick region)யϠ[16,17]ĂЯѩ዇࢖ม̷ቢତᛈᑅ˧̶̝Ҷ֭ܧ ӮߏᄃݬШତᛈᑅ˧јּͧĄЯѩ၁ᅫ዇࢖ม̝ତᛈડ

ાĂΞͽ̶ј໣જડ(slip regions)ᄃᕆ႖ડ[16,17]Ą׌ᇅّ

វႋજତᛈॡĂొЊ໣જ(partial slip)̷ቢତᛈᑅ˧̶̝

ҶĂߏϤCarter [18]ٙ೩΍ĄXu ̈́ Jiang [19]അӀϡѣࢨ̮

৵ڱֽଣ੅ొЊ໣જ̝ႋજତᛈયᗟĂඕڍ޽΍ొ̶໣જ

ົᇆᜩႋજ͞Ш̝ണ঻ᑕ˧ࠤλĂҭ၆ٺคШണ঻ᑕ˧̝

ᇆᜩ̙֭̂Ą

P M

R = 425

x

h l

z

6 mm

IRJ

ဦ 1! ዇࢖ତᛈೀңሀݭ

ώࡁտ̝͹ࢋϫ۞ߏ҂ᇋ஝͔˧үϡ˭Ăጱ࡭዇࢖ม

̝ତᛈડાயϠొЊ໣જன෪ॡĂଣ੅ѩొЊ໣જன෪၆ ٺ࢖྽඗ቡତᐝܢܕĂ዇࢖ତᛈડાᑕ˧ಞ̶Ҷត̼̝ᇆ ᜩĄ̶ژॡଳϡ˟ჯѣࢨ̮৵ሀݭĂ዇࢖ม̝ତᛈ݋ߏӀ ϡତᛈ̮৵(contact element)ֽሀᑢĄώࡁտણᇴ̝ଣ੅Ă Β߁̙Т̝ତᛈ෼ᗓͽ̈́Epoxy-fiberglassăPTFE ᄃ Nylon 66 ˬ჌඗ቡͯՄኳĄ

˟ăᄿਬତᛈநኢ

ώ ࡁ տ ଳ ϡ ˟ჯ π ࢬ ᑕ ត ሀݭ ֽ ሀ ᑢ ዇ ࢖ม ̝ ତ ᛈĂ̶ژॡ૟᐀዇̈́࢖྽̶Ҿሀᑢࠎ˘๪ߗᄃ˘πڕĂт ဦ1 ٙϯĄѣᙯ˟ჯᄿਬତᛈયᗟĂତᛈડા̰ତᛈᑅ˧

̶̝ҶĂॲፂᄿਬତᛈநኢ[3]ΞܑϯࠎĈ

2 / 2 1

1 ) ,

( 











− −

=

o

o a

l p x

l x

p (1)





 −

− +





 +

=

2 22 1

12 1 2 1

1 1

1 1 4

E E

R R

ao P ν ν

π (2)

L a p P

o

o π

= 2 (3)

ё ̚ p( lx, )ߏ ዇ ࢖ д ତ ᛈ ડ ા ̰ ݬ Ш ତ ᛈ ᑅ ˧(normal contact pressure)̶̝ҶĂp ߏତᛈડા̰̝౵̂ତᛈᑅo

˧Ăa ߏ Hertz ତᛈܜޘ̝ΗĂP ߏүϡ࢑ྶĄRo ăE ͽ̈́

ν ̶Ҿߏତᛈۏវ̝ѡதΗशăᇅّሀᇴ̈́˪ڗͩͧ

(Poisson’s ratio)ĂL дѩࠎಏҜତᛈݓޘĄ˭ᇾ 1 ̈́ 2 ̶Ҿ

΃ܑ᐀዇̈́࢖྽Ąl ࠎତᛈ෼ᗓĂؠཌྷࠎ዇࢖੓ؕତᛈᕇҌ IRJ ᄃ࢖྽νᙝࠧࢬม̝෼ᗓĄॲፂᄿਬତᛈநኢĂତᛈ ડા̰̝ତᛈᑅ˧ߏ၆Ⴭ̶ҶĂͷ౵̂ତᛈᑅ˧ߏ൴Ϡд

዇࢖੓ؕତᛈᕇĄώࡁտ̶ژॡ዇࢖ଳ࠹Т̝ՄኳĂࡶ᐀

዇ΗशR1=RĂ࢖྽ΗशR2=∞Ă݋͞඀ё(2)Ξᖎ̼ࠎĈ

(3)

Slip Stick

N O

d c ao

q (x) q’ (x)

q" (x)

l

ဦ 2! ొЊ໣જॡ̷ቢତᛈᑅ˧̶̝Ҷϯຍဦ

( )

R E ao P

1 2

2

4 ν

π

= − (4)

ᙯٺ዇࢖̝ତᛈĂ༊዇࢖ତᛈࢬม̝ᇝᑡ˧̈ٺ౵̂ᐖᇝ ᑡ˧ Pµ ॡĂ׎ତᛈડાົ̶ࠎ׌࣎ડાâࠎ໣જડ(slip region)ĂΩ˘ࠎᕆ႖ડ(stick region)Ą׎̷ቢତᛈᑅ˧

(tangential contact pressure)̶Ҷ̝ϯຍဦтဦ 2 ٙϯĂѩன ෪Ⴭࠎొ̶໣જ(partial slip)Ąॲፂ Carter நኢ[18]Ă׎዇

࢖ม̷̝ቢତᛈᑅ˧ q(x, l)ΞܑϯࠎĈ



≤ +

′′

+

+

′ −

=

o o

a l x d c for q q

d c l x a for

q q (5)

ё̚

2 / 2 1

1 ) ,

( 











− −

′ =

o

o a

l p x

l x

q µ

(6)

( )

2 1/2

1 )

,

( 









 

 − −

′′ =

c d l p x

a l c x

q o

o

µ (7)

2 / 1

1 



 −

= P

Q a

c

o µ (8)

˯ё̚ c ࠎᕆ႖ડા̝ତᛈΗशĂd=aocߏ q′ ͕̚Ҍ

q ′′ ͕̝̚෼ᗓĄࡶ዇࢖ม̝ᇝᑡ˧ඈٺ౵̂ᐖᇝᑡ˧ Pµ

ॡĂ݋ᕆ႖ડા̝̂̈ࠎ࿬Ăܑϯ዇࢖ม̝ତᛈࠎԆБ໣

જ(full slip)Ąµߏ዇࢖ม̝ᇝᑡܼᇴĂQ ݋ࠎ዇࢖ତᛈࢬ ม̝ᇝᑡ˧̷ٕቢ˧Ą

ˬăѣࢨ̮৵ሀݭᄃ̶ژ͞ڱ

ώࡁտߏӀϡ ABAQUS ֽሀᑢ̶ژ዇࢖̝ତᛈય ᗟĂଳϡ˟ჯᇅّሀݭĄ዇࢖ม̝ତᛈߏଳϡତᛈ̮৵

ဦ 3! ዇࢖ତᛈડાѣࢨ̮৵̝ྎ௟

(contact element)ֽሀᑢĂତᛈ̮৵Ξͽሀᑢ዇࢖มତᛈડ

ા ̝ ̂ ̈ ̈́ ତ ᛈ ᑅ ˧ ̝ ̶ Ҷ ĄABAQUS ߏ Ӏ ϡ ͹ ଂ (master-slave)ᙯֽܼؠཌྷ׌ۏវม̝ତᛈĂώࡁտ̶ژॡ

૟᐀዇˯Ξਕତᛈ̝ડાؠཌྷࠎଂજ(slave)Ă҃࢖྽˯Ξ ਕ̝ତᛈડા݋ؠཌྷࠎ͹જ(master)ĄЯѩĂѣࢨ̮৵̶ژ ॡυืࢋАؠཌྷତᛈડા̈́ତᛈ͞ШĄ༊዇࢖มѣତᛈ ॡĂତᛈ̮৵ӈΞͽ଀ۢତᛈડા̰ତᛈҜཉ̶̝ฟౕٕ

ЪĂЯѩΞͽሀᑢତᛈડા̝̂̈Ă֭ࢍზ΍዇࢖ม̝ତ ᛈᑅ˧ĄѩγĂତᛈ̮৵׍ѣᔖҺଂજІࡍˢ͹જІ̝Α ਕĄЯѩĂࡶ̙ଳϡତᛈ̮৵ੵ˞൑ڱ଀ۢ׌ତᛈۏវ̝

ତᛈᑅ˧γĂ዇࢖ม˵ົѣࡍˢ̝ன෪Ăᄃ၁ᅫ̙௑Ąώ ࡁտ͹ࢋߏଣ੅ତᛈ෼ᗓ lĂͽ̈́඗ቡͯՄኳ၆඗ቡତᐝܢ ܕડાᑕ˧ಞត̼̝ᇆᜩĂ̶ژ̝ඕڍ֭ᄃHertz ତᛈந ኢͧྵĂଣ੅Hertz நኢд඗ቡତᐝܢܕ̝ዋϡቑಛĄ

̶ژॡ᐀዇Ηश R ଳϡ 425mmĂ࢖྽੼ޘ h ࠎ 172mmĂ࢖྽ܜޘࠎ 1600mmĂ඗ቡ̝ͯᆵޘࠎ 6mmĄд ѩ ؠ ཌྷ ࢖ ྽ ᄃ඗ ቡ ͯ ν ᙝ ̝ࠧ ࢬ ఍ ࠎ ळ ᇾࣧ ᕇ(x=0Ă z=0)Ą̶ژॡүϡٺ᐀዇͕̝̚ݬШ࢑ྶ P ࠎ 78400NĂ֭

߉ΐ˘˧৏ M ٺ᐀዇˯Ăֽሀᑢ஝͔˧̝үϡĂֹ଀዇࢖

มயϠ̷̝ቢ˧ Q ᄃ౵̂ᐖᇝᑡ˧ Pµ ̝ͧࣃQPࠎ 0.1Ą᐀዇ᄃ࢖྽ม̝ᇝᑡܼᇴµ ઄నࠎ 0.3Ă֭઄న࢖྽

غొ׽ؠ̙જĂͷ࢖྽ᄃ඗ቡͯߏඕЪд˘੓Ą̶ژॡֻ

ଳϡ˝჌̙Т̝ତᛈ෼ᗓ lĂ̶Ҿࠎ-72ă-48ă-24ă-12ă0ă 12ă24ă48ă72mmĄѣࢨ̮৵̶ژॡଳϡα༼ᕇ̝˟ჯ πࢬᑕត̮৵Ăဦ3 ߏ዇࢖ତᛈડાѣࢨ̮৵̝ྎ௟ĄϤ ٺ̮৵̝ᇴϫᄃତᛈડા̮৵̝̂̈ົᇆᜩז̶ژ̝ჟቁ ޘĂЯѩ̶ژॡĂࢵАଣ੅̙Т̮৵̂̈ᄃᇴϫ၆ତᛈᑅ

˧̶Ҷ̝ᇆᜩĂ֭ᄃ Hertz நኢͧྵĂͽቁᄮѣࢨ̮৵ሀ ݭ̝໤ቁّĄඕڍពϯд՟ѣIRJ ̝ଐڶ˭Ă༊̮৵̝ᇴ ϫࡗࠎ25870 ࣎Ă༼ᕇࡗѣ 26465 ࣎ॡĂ᐀዇ᄃ࢖྽ม̝

ତᛈ̮৵Вѣ360 ࣎Ă׎ତᛈᑅ˧̶̝Ҷᄃ Hertz நኢ̝

ᄱम̈ٺ 5%ĄЯѩώ̶̝͛ژಶͽѩѣࢨ̮৵ሀݭүࠎ

̶ژሀݭĄ

̶ژॡĂ᐀዇ᄃ࢖྽ଳϡ࠹Т̝ՄኳĂ׎̚ᇅّܼᇴ E ࠎ 210 GPaĂ˪ڗͩͧν ࠎ 0.3Ă඗ቡ̝ͯՄኳ̶Ҿࠎ

(4)

2.5

2.0

1.5

1.0

0.5

0.0 p/pO

-5 -4 -3 -2 -1 0 1 2

IRJ x/aO

l/aO = 3.75 l/aO = 2.50 l/aO = 1.25 l/aO = 0.63 l/aO = 0 HCT

IRJ: Epoxy-fiberglass

ဦ 4! ̙Тତᛈ෼ᗓ၆ݬШତᛈᑅ˧̶Ҷត̼̝ᇆᜩ

PTFEăNylon 66 ᄃ Epoxy-fiberglassĄPTFE ̝ᇅّሀᇴࠎ 0.4GPaĂν ࠎ0.46ćNylon 66 ̝ᇅّሀᇴࠎ 1.59GPaĂν ࠎ 0.39ćEpoxy-fiberglass ̝ᇅّሀᇴࠎ 29.7GPaĂνࠎ0.17Ą

αăඕڍᄃ੅ኢ

ώࡁտ͹ࢋߏଣ੅̙Тତᛈ෼ᗓᄃ඗ቡͯՄኳĂ၆዇

࢖ତᛈડાᑕ˧ಞត̼̝ᇆᜩĄ̶ژඕڍ֭ᄃ Hertz ତᛈ நኢͧྵĂଣ੅Hertz நኢд඗ቡତᐝܢܕ̝ዋϡّ̈́ዋ ϡቑಛĄॲፂ͞඀ё(3)̈́(4)Ξ଀Ă׎ତᛈડા̰̝౵̂ݬ Шତᛈᑅ˧ p02604MPaĂତᛈܜޘ aoࠎ19.17mmĄЯ ѩϤ IRJ ν͞ҌΠ̝͞ତᛈ෼ᗓl/aoĂΞܑϯࠎ-2.5ă -1.25ă-0.63ă0ă0.63ă1.25ă2.5 ̈́ 3.75Ąဦ 4 ߏ༊඗ቡ

ͯՄኳࠎ Epoxy-fiberglass ॡĂ̙Тତᛈ෼ᗓ al/ o၆ݬШ ତᛈᑅ˧̶Ҷ̝ᇆᜩĄ̶ژඕڍពϯĂ༊ତᛈ෼ᗓᅈᗓIRJ ॡĂ׎ݬШତᛈᑅ˧ͧp/p0ᄃHertz நኢ࠹༊ତܕĂ̙צ IRJ ̝ᇆᜩĄЯѩώࡁտٙଳϡ̝ѣࢨ̮৵ሀݭĂᑕΞͽ

໤ቁ̶ژᑕ˧ಞ̝ត̼ĄϤဦ 4 Ξͽ଀ۢĂ༊ତᛈ෼ᗓ 5

. 2 /a

l o ॡĂݬШତᛈᑅ˧צIRJ ̝ᇆᜩ࠹༊̈Ą༊዇

࢖ତᛈᕇତܕ඗ቡତᐝॡĂӈ l/ao ≤2.5ĂݬШତᛈᑅ˧

ࣃځពצז඗ቡ̝ͯᇆᜩĂᄃHertz நኢࣃมѣځព̝म ளĄ

Ϥٺ౵̂ગᑕ˧ߏ࢖ࢬ൴Ϡ௲ར̝ࣧЯ[20]ĂЯѩώ ࡁտ૟̶ژଣ੅༊ତᛈ෼ᗓl/aoԼតॡĂ͍׎ߏତܕIRJ ॡĂ዇࢖ม౵̂ગᑕ˧τmax̝ត̶̼̈́ҶଐԛĄဦ5 ߏ඗

ቡͯՄኳࠎNylon 66 ॡĂ༊዇࢖ତᛈᕇӮд IRJ νᙝॡĂ ӈl/ a0=-3.75~0Ă֭҂ᇋ஝͔˧̝үϡ˭Ă౵̂ગᑕ˧

po max/

τ ڻ඾z ค̝ត̼ଐԛĂဦ̚၁ቢ΃ܑ Hertz ତᛈ நኢቢ[17]Ą͕̚ቢ΃ܑд̙҂ᇋ஝͔˧̈́ IRJ ଐڶ˭Ă

౵̂ગᑕ˧τmax/po̶̝ҶĄΞͽ଀ۢĂ׎̶Ҷᄃ Hertz நኢቢ࠹༊ତܕĄ෍ቢ݋ܑϯ༊ତᛈ෼ᗓl/ao=-11.06Ă ͷ̙҂ᇋ஝͔˧̝ᇆᜩॡĂ׎౵̂ગᑕ˧τmax/po̶̝

ҶĂΞͽ࠻΍׎౵̂ગᑕ˧̶̝Ҷ̏צזIRJ ̝ᇆᜩĄဦ 5 ̚˵Ξͽ୻຾۞଀ۢĂ༊҂ᇋ஝͔˧үϡॡĂ౵̂ગᑕ

0.5

0.4

0.3

0.2

0.1

0.0 τmax/pO

0 1 2 3 4 5 6 7

z/aO

IRJ: Nylon 66 without traction no IRJ

l/aO = 3.75 l/aO = 2.5 l/aO = 1.25 l/aO = 0 HCT

ဦ 5! IRJ νᙝ̙Тତᛈ෼ᗓ၆౵̂ગᑕ˧̶Ҷត̼̝ᇆᜩ

0.5

0.4

0.3

0.2

0.1

0.0 τmax/pO

0 1 2 3 4 5 6 7

z/aO

IRJ: Nylon 66 l/aO = 3.75 l/aO = 2.5 l/aO = 1.25 l/aO = 0 HCT

ဦ 6! IRJ Πᙝ̙Тତᛈ෼ᗓ၆౵̂ગᑕ˧̶Ҷត̼̝ᇆᜩ

˧τmax/po̶̝Ҷځពצז዇࢖มᇝᑡ˧̈́IRJ ̝ᇆᜩĄ ᐌ඾዇࢖ତᛈҜཉດତܕ IRJĂ׎౵̂ગᑕ˧τmax/poᄃ Hertz நኢ̝ᄱमಶດ̂Ą༊ତᛈ෼ᗓl/ao=0 ॡĂӈ዇࢖

ତᛈᕇࣣрତᛈд඗ቡͯ/࢖྽νᙝ̝ତࢬ఍Ă׎τmax/po

̝౵੼ࣃ੼྿0.4Ăྵ Hertz நኢࣃ 0.3 ੼ࡗ 30%ĄЯѩΞ ͽځቁ۞଀ۢĂ౵̂ગᑕ˧τmax/po̶̝Ҷځពצ஝͔˧

̈́IRJ ̝ᇆᜩĄ༊ତᛈҜཉд IRJ ΠᙝॡĂӈ҂ᇋl /ao= 1.25~3.75 ॡĂ׎τmax/po̶̝Ҷтဦ6 ٙϯĄᄃဦ 5 ̝ඕ ڍ࠹ҬĂ༊ତᛈᕇດତܕIRJ ॡĂ౵̂ગᑕ˧̶̝Ҷצ IRJ

̝ᇆᜩಶດځពĄဦ7 ߏତᛈ෼ᗓl/ao= 0 ॡĂˬ჌̙Т

඗ቡͯՄኳĂEpoxy-fiberglassăNylon 66 ̈́ PTFEĂ၆౵̂

ગᑕ˧̶Ҷ̝ᇆᜩĄဦ̚ពϯĂᇅّሀᇴດ̝̂඗ቡͯĂ ӈEpoxy-fiberglassĂ׎౵̂ગᑕ˧τmax/po̶̝ҶᄃHertz நኢࣃม̝ᄱमಶດ̈Ąӈᇅّሀᇴດ̝̂඗ቡͯĂ׎၆

዇࢖ม౵̂ગᑕ˧̶Ҷ̝ᇆᜩಶດ̈Ąဦ7 ̚˵୻຾۞ព ϯĂд዇࢖ତᛈᕇ̝Ҝཉz /ao=0 ॡĂ׎τmax/po̝ͧࣃ

֭՟ѣ˭ࢫҌ࿬Ă҃ߏჯ޺д࠹၆̝੼ࣃĄࣧЯΞਕߏϤ ٺ࢖྽ᄃ඗ቡͯߏඕЪд˘੓ĂЯѩ༊዇࢖ତᛈᕇତᛈז IRJ νࠧ͞ࢬॡĂ඗ቡͯצតԛᑟᑅ҃யϠྵ̝̂តԛĂ Яѩౄјତᛈᕇܢܕ౵̂ગᑕ˧ჯ޺д࠹၆੼ࣃĄဦ8 ݋

(5)

0.5

0.4

0.3

0.2

0.1

0.0 τmax/pO

0 1 2 3 4 5 6 7

z/aO

Epoxy-fiberglass Nylon 66 PTFE HCT l/aO = 0

ဦ 7! ̙Т඗ቡͯՄኳ၆౵̂ગᑕ˧̶Ҷត̼̝ᇆᜩ

ߏ ଣ ੅ ̙ Т ତ ᛈ ෼ ᗓ ၆τmax/po౵ ̂ ࣃ Ҝ ཉ ត ̼ ̝ ᇆ ᜩĂဦ̚၁ቢ΃ܑ Hertz நኢቢ׎τmax/po౵̂ࣃ̝Ҝཉ ߏдz/ao=0.78ĄඕڍពϯĂᅈᗓ IRJ ॡĂˬ჌̙ТՄኳ

̝඗ቡͯĂ׎τmax/po౵̂ࣃ̝ҜཉᄃநኢࣃӮ࠹༊Ӛ ЪĄᐌ඾ତᛈᕇດତܕ IRJĂ׎τmax/po౵̂ࣃ̝Ҝཉົ

ດତܕ዇࢖ତᛈࢬĄϤဦ8 Ξ଀ۢĂ౵୺̝Ҝཉߏ൴Ϡд ao

/

l =0Ă׎z/ao=0.56ĄЯѩĂࡶ IRJ ଳϡᇅّሀᇴດ̈

̝඗ቡͯĂ༊ତᛈᕇତܕIRJ ॡĂ׎τmax/po౵̂ࣃ̝Ҝ ཉົດـ࢖྽ܑࢬொજĄ

̣ăඕ! ኢ

ώࡁտ͹ࢋߏଣ੅዇࢖ତᛈ෼ᗓl /aö́IRJ ̝඗ቡͯ

ՄኳĂ၆዇࢖ତᛈᑕ˧ಞត̼̝ᇆᜩĄ˯̶̝ࢗژඕڍĂ Ξ଀ͽ˭̝ඕኢĈ

1. ତᛈ෼ᗓ l/ao ≥2.5ॡĂ዇࢖ତᛈᑅ˧צ඗ቡ̝ͯᇆᜩ

࠹༊̈Ą༊዇࢖ତᛈᕇତܕ࢖྽඗ቡତᐝॡĂତᛈᑅ˧

ࣃځពצז඗ቡ̝ͯᇆᜩĂᄃHertz நኢࣃมѣځព̝

मளĄ

2. ౵̂ગᑕ˧τmax/po̶̝Ҷځពצ዇࢖ม஝͔˧̈́ IRJ

̝ᇆᜩĂ༊዇࢖ତᛈᕇତܕIRJ ॡĂ׎τmax/po̝౵̂

ࣃ੼྿0.4Ăྵ Hertz நኢࣃ 0.3 ੼ࡗ 30%Ą

3. ࡶ IRJ ଳϡᇅّሀᇴດ̝̈඗ቡͯĂ༊዇࢖ତᛈᕇତܕ IRJ ॡĂ׎τmax/po̝౵̂ࣃ൴ϠҜཉົـດ࢖྽ܑࢬ

ொજĄ

ᄫ! ᔁ

ώࢍ൪ٚᄋ઼ࡊົ۞གྷ෱ྃӄ(ࢍထበཱིĈNSC 91- 2212-E-020-005)Ăдѩপ࡭ᔁԢĄ

௑ཱི৶͔

a Hertz ତᛈܜޘ̝Η o

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0

-4 -3 -2 -1 0 1 2 3 4

l/aO

Epoxy-fiberglass Nylon 66 PTFE z/aO

ဦ 8! ̙Т඗ቡͯՄኳ၆τmax/po౵̂ࣃҜཉត̼̝ᇆᜩ

c ᕆ႖ડા̝ତᛈΗश

d q′ ͕̚Ҍ q′′ ͕̝̚෼ᗓ

E ᇅّሀᇴ L ಏҜତᛈݓޘ

l ዇࢖੓ؕତᛈᕇҌIRJ ᄃ࢖྽νᙝࠧࢬม̝෼ᗓ M ߉ΐٺ᐀዇̝˧৏

P үϡ࢑ྶ

) , ( lx

p ዇࢖ତᛈડા̰ତᛈᑅ˧̶̝Ҷ p o ତᛈડા̰̝౵̂ତᛈᑅ˧

Q ዇࢖ม̝ᇝᑡ˧

q′ ໣જડા̝ગᑅ˧̶Ҷ q

q′+ ′′ ᕆ႖ડા̝ગᑅ˧̶Ҷ

R ă1 R ᐀዇ᄃ࢖྽дତᛈҜཉ̝ѡதΗश 2 ν1ăν2 ˪ڗͩͧ

µ ׌ତᛈۏវ̝ᇝᑡܼᇴ τmax ዇࢖ତᛈ̝౵̂ગᑅ˧

ણ҂͛ᚥ

1. Cox, J. E., and Kerr, A. D., “Analysis and tests of bonded Insulated Rail Joints Subjected to Vertical Wheel Loads,”

International Journal of Mechanical Science, Vol. 41, No.

10, pp. 1253-1272 (1999).

2. Chen, Y. C., and Kuang, J. H., “Contact Stress Variations Near the Insulated Rail Joints,” Proceedings of the Institution of Mechanical Engineering, Journal of Rail and Rapid Transit, Vol. 216, No. 4, pp. 265-273 (2002).

3. Hertz, H., “ U&&ber die Berührung fester elastischer Körper,” Journal of reine und angewandte Mathematik, Vol. 92, pp. 156-171 (1882).

4. Rinsberg, J. W., Loo-Morrey, M., Kapoor, A., and Beynon, J. H., “Prediction of Fatigue Crack Initiation for Rolling Contact Fatigue,” International Journal of Fatigue, Vol.

22, No. 3, pp. 205-215 (2000).

(6)

5. Kim, J. K., and Kim, C. S., “Fatigue Crack Growth Behavior of Rail Steel under Mode I and Mixed Mode Loadings,” Materials Science and Engineering A, Vol.

338, No. 1-2, pp. 191-201(2002).

6. Ringsberg, J. W., “Life Prediction of Rolling Contact Fatigue Crack Initiation,” International Journal of Fatigue, Vol. 23, No. 7, pp. 575-586 (2001).

7. Kabo, E., “Material Defects in Rolling Contact Fatigue- Influence of Overloads and Defect Clusters,” Interna- tional Journal of Fatigue, Vol. 24, No. 8, pp. 887-894 (2002).

8. Ertz, M., and Knothe, K.,” A Comparison of Analytical and Numerical Methods for the Calculation of Tempera- tures in Wheel/Rrail Contact,” Wear, Vol. 253, No. 3-4, pp.

498-508 (2002).

9. Yan, W., and Fischer, F. D., “Applicability of the Hertz Contact Theory to Rail-Wheel Contact Problems,” Archive of Applied Mechanics, Vol. 70, pp. 255-268 (2000).

10. Bijak-Żochowski, M., and Marek, P., “Residual Stress in Some Elasto-Plastic Problems of Rolling Contact with Friction,” International Journal of Mechanical Science, Vol. 39, No. 1, pp.15-32. (1997).

11. Yu, C. C., and Keer, L. M., “Three-Dimensional Residual Stress Effects on the Fatigue Crack Initiation in Rails,”

ASME Journal of Tribology, Vol. 119, pp. 660-666 (1997).

12. Telliskivi, T., and Olofsson, U., “Contact Mechanics Analysis of Measured Wheel-Rail Profiles using the Fini Element Method,” Proceedings of the Institution of Mechanical Engineering, Journal of Rail and Rapid

Transit, Vol. 21, No. 2, pp. 65-72 (2001).

13. Pau, M., Aymerich, F., and Ginesu. F., “Distribution of Contact Pressure in Wheel-Rail Contact Area,” Wear, Vol.

253, No. 1-2, pp. 265-274 (2002).

14. Tyfour, W, R., Beynon, J. H., and Kapoor, A., “Deteriora- tion of Rolling Contact Fatigue Life of Pearlitic Rail Steel due to Dry-wet Rolling-Sliding Line Contact,” Wear, Vol.

197, No. 1-2, pp. 255-265 (1996).

15. Ramanan, L., Krishna, K. R., and Sriraman, R., “Thermo- mechanical Finite Element Analysis of Rail Wheel,”

International Journal of Mechanical Science, Vol. 41, No.

4-5, pp. 487-505 (1999).

16. Hills, D. A., Mechanics of Elastic Contacts, Butterworth- Heinemann Ltd, UK, Chap. 4 (1993).

17. Johnson, K. L., Contact Mechanics, Cambridge: Cambridge University Press, UK, pp. 101-102 (1985).

18. Cater, F. W., “On The Action of Locomotive Driving Wheel,” Proceed of the Royal Society Series A, Vol. 112, pp. 151-157 (1926).

19. Xu, B., and Jiang, Y., “Elastic-Plastic Finite Element Analysis of Partial Slip Rolling Contact,” ASME Journal of Tribology, Vol. 124, No. 1, pp. 20-26 (2002).

20. Coenraad Esveld, “Modern Railway Track,” ISBN 90-800 324-1-7, MRT Productions, Netherlands, pp. 70 (1989).

2003 ѐ 06 ͡ 06 ͟! ќቇ 2003 ѐ 07 ͡ 10 ͟! ܐᆶ 2003 ѐ 08 ͡ 21 ͟! ኑᆶ 2003 ѐ 10 ͡ 03 ͟! ତצ

參考文獻

相關文件

After students have had ample practice with developing characters, describing a setting and writing realistic dialogue, they will need to go back to the Short Story Writing Task

volume suppressed mass: (TeV) 2 /M P ∼ 10 −4 eV → mm range can be experimentally tested for any number of extra dimensions - Light U(1) gauge bosons: no derivative couplings. =>

The spontaneous breaking of chiral symmetry does not allow the chiral magnetic current to

• Formation of massive primordial stars as origin of objects in the early universe. • Supernova explosions might be visible to the most

(Another example of close harmony is the four-bar unaccompanied vocal introduction to “Paperback Writer”, a somewhat later Beatles song.) Overall, Lennon’s and McCartney’s

專案執 行團隊

Teacher then briefly explains the answers on Teachers’ Reference: Appendix 1 [Suggested Answers for Worksheet 1 (Understanding of Happy Life among Different Jewish Sects in

Digital PCR works by partitioning a sample into many individual real-time PCR reactions, some portion of these reactions contain the target molecules(positive) while others do