• 沒有找到結果。

Interface sharpening methods for compressible multiphase flow problems: Overview & look ahead

N/A
N/A
Protected

Academic year: 2022

Share "Interface sharpening methods for compressible multiphase flow problems: Overview & look ahead"

Copied!
94
0
0

加載中.... (立即查看全文)

全文

(1)

Interface sharpening methods for

compressible multiphase flow problems:

Overview & look ahead

Keh-Ming Shyue

Institute of Applied Mathematical Sciences National Taiwan University

Joint work: M. Pelanti (Paris Tech) & F. Xiao (Tokyo Tech) 11:00-12:00, September 17, 2015, IUSTI, AMU

(2)

Outline

Interface sharpening methods for model systems:

1. Passive tracer transport (motivation) 2. Compressible single-phase flow (inviscid)

3. 5-equation 1-velocity, 1-pressure model for compressible two-phase flow

4. 6-equation 1-velocity, 2-pressure model for compressible two-phase flow

5. Model for compressible two-phase flow with drift-flux approximation

(3)

How interface sharpening ?

Higher order method for sharpening interface ?

(4)

How interface sharpening ?

Higher order method for sharpening interface ?

Benchmark test for shock in air & R22 bubble interaction

(5)

With anti-diffusion WENO 5

(6)

With anti-diffusion WENO 5

(7)

With anti-diffusion WENO 5

(8)

With anti-diffusion WENO 5

(9)

With anti-diffusion WENO 5

(10)

With anti-diffusion WENO 5

(11)

With anti-diffusion WENO 5

(12)

With anti-diffusion WENO 5

(13)

WENO gives more chaotic interface, positivity-preserving in WENO5 with MG EOS (working open issue)

With anti-diffusion WENO 5

(14)

THINC gives more regularized interface

With anti-diffusion With THINC

(15)

Standard high-resolution method gives poor interface resolution

Volume tracking (Shyue 2006) 2nd order

(16)

Shock-contact interaction: Wave speeds diagnosis

Velocity (m/s) Vs VR VT Vui Vuf Vdi Vdf

Experiment 415 240 540 73 90 78 78

Quirk & Karni 420 254 560 74 90 116 82 Kokh & Lagoutiere 411 243 525 65 86 86 64

Ullah et al. 410 246 535 65 86 76 60

Shyue (tracking) 411 243 538 64 87 82 60 Capturing results 410 244 536 65 86 98 76 THINC results 410 244 538 65 86 87 64 Anti-df results 410 244 532 64 85 100 78

(17)

Toy problem: Passive tracer transport

Free-surface (or 2-phase) flow modelled by incompressible Navier-Stokes equations read

t(ρ~u) + div (ρ~u ⊗ ~u) + ∇p = ∇ · τ + ρ~g + ~fσ

tα + ~u · ∇α= 0 (volume fraction transport) div(~u) = 0

Material quantities in 2-phase region determined by z =αz1 + (1 −α) z2, z = ρ, ǫ, & σ Source terms are dependent on α also

τ = ǫ ∇~u + ∇~uT

, f~σ = −σκ∇α with κ = ∇·

 ∇α

|∇α|



Sharply resolved positivity-preserving α is fundamental

(18)

Standard interface capturing results for toy problem, observing poor interface resolution

Passive advection Rotating disc

Vortex in cell

(19)

How interface sharpening ? Toy problem

Eulerian interface sharpening methods (i.e., use uniform underlying grid) for volume fraction transport include

1. Differential-based approach

Artificial compression: Harten CPAM 1977, Olsson &

Kreiss JCP 2005

Anti-diffusion: So, Hu & Adams JCP 2011 2. Algebraic-based approach

CICSAM (Compressive Interface Capturing Scheme for Arbitrary Meshes): Ubbink & Issa JCP 1999

THINC (Tangent of Hyperbola for INterface Capturing):

Xiao, Honma & Kono Int. J. Numer. Meth. Fluids 2005 No Lagrangian moving grid or volume tracking cut cells

(20)

Differential-based interface sharpening

Use modified volume-fraction transport model as basis

tα + ~u · ∇α = 1 µI

Dα

µI ∈ R+: free parameter, Dα: interface-sharpening operator Compression form (Olsson & Kreiss JCP 2005)

Dα:= ∇ · [(εc∇α · ~n − α (1 − α)) ~n]

~n = ∇α/k∇αk, εc ∈ R+ (order of mesh size) Anti-diffusionform (So, Hu & Adams JCP 2011)

Dα :=−∇ · (εd∇α) εd∈ RN+ (order of velocity magnitude)

(21)

Solution of interface-sharpening model

tα + ~u · ∇α = 1 µI

Dα

can be approximated by employing fractional step method That is, in each time step,

1. Transport step over time step ∆t for

tα + ~u · ∇α = 0 by state-of-the-art interface-capturing solver

2. Interface-sharpening stepover pseudo-time step ∆τ for

τα = Dα, τ = t/µI

by explicit finite-difference solver, for example

(22)

Passive tracer transport: Anti-diffusion results

Passive advection Rotating disc

Vortex in cell

(23)

Passive tracer transport: THINC results

Passive advection Rotating disc

Vortex in cell

(24)

Vortex-in-cell: Comparisons of results

With THINC

With anti-diffusion

Without interface sharpening

(25)

THINC-based interface sharpening

In THINC method, originalvolume-fraction equation

tα + ~u · ∇α = 0 is used in each time step as

1. Reconstruct piecewise smooth function ˜αi(x, tn) based on THINC reconstruction procedure from cell average {αni} at time tn

2. Constructspatial discretization for ~u · α using interpolated initial data from { ˜αi(x, tn)} obtained in step 1

3. Employsemi-discrete method to update αn from current time to next αn+1 over time step ∆t

(26)

THINC reconstruction in step 1 assumes

˜

αi(x)= αmin+ αmax− αmin

2



1 +γtanh



βx − xi−1/2

∆x −x¯i



αM = M (αi−1, αi+1) , M := min, max, γ = sgn (αi+1− αi−1) β measures sharpeness (given constant) & x¯i chosen to fulfill

αi = 1

∆x

Z xi+1/2 xi−1/2

˜

αi(x)dx

For example, cell edges used in step 2 determined by αi+1/2,L = αmin+ αmax− αmin

2



1 + γ tanh β +C 1 +Ctanh β



αi−1/2,R = αmin+ αmax− αmin

2 (1 + γC) (C not shown)

(27)

THINC reconstruction: Graphical view

-0.5 0 0.5 1 1.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

β=2 β=3

(x − xi+1/2)/(xi+1/2− xi−1/2)

˜αi(x)

αi−1/2,R

αi+1/2,L

(28)

Passive tracer transport: Convergence study

Convergence study of 1-norm errors E1(α) as mesh is refined;

results for passive advectionare shown only

With THINC No sharpening With anti-diffu N × N E1(α) Order E1(α) Order E1(α) Order 50 × 50 9.8840 NaN 91.7486 NaN 4.0436 NaN 100 × 100 5.1746 0.93 60.6698 0.60 2.0558 0.98 200 × 200 2.6455 0.97 39.3623 0.62 0.9921 1.05 400 × 400 1.3373 0.98 25.2699 0.64 0.4414 1.17

(29)

Passive tracer transport: CPU timing study

CPU timing in seconds for Passive tracer transport problems (run on HP xw 9400 with AMD Dural-Core Opteron)

Method/Problem Passive advec. Rotating disk Vortex in cell

With THINC 20.5 21.8 280.7

With anti-df 32.1 29.4 383.5

No sharpening 33.2 28.8 344.9

Grid 100 × 100 100 × 100 200 × 200

This validates THINC & anti-diffusion schemes for passive tracer transport

(30)

Toy problem: Summary & remarks

1. Anti-diffusioninterface sharpening Employed aspost-processing step

Diffusion coefficientεd & parameter µI controls interface sharpeness

(31)

Toy problem: Summary & remarks

1. Anti-diffusioninterface sharpening Employed aspost-processing step

Diffusion coefficientεd & parameter µI controls interface sharpeness

2. THINCinterface sharpening

Employed aspre-processing step

Parameterβ controls interface sharpeness

(32)

Toy problem: Summary & remarks

1. Anti-diffusioninterface sharpening Employed aspost-processing step

Diffusion coefficientεd & parameter µI controls interface sharpeness

2. THINCinterface sharpening

Employed aspre-processing step

Parameterβ controls interface sharpeness 3. Hybrid anti-diffusion-THINC is feasible

(33)

Toy problem: Summary & remarks

1. Anti-diffusioninterface sharpening Employed aspost-processing step

Diffusion coefficientεd & parameter µI controls interface sharpeness

2. THINCinterface sharpening

Employed aspre-processing step

Parameterβ controls interface sharpeness 3. Hybrid anti-diffusion-THINC is feasible

4. For problems withmore than 2 fluid components,

interface sharpening based onanti-diffusion appears to be more robust than THINC

(34)

Compressible 1-phase flow (inviscid)

Assume inviscid, non-heat conducting, 1-phase, compressible flow in Cartesian coordinates:

tq + XN

j=1

xjfj(q) = 0

with q & fj, j = 1, 2, . . . , N, defined by q = (ρ, ρu1, . . . , ρuN, E)T

fj = (ρuj, ρu1uj+ pδj1, . . . , ρuNuj+ pδjN, Euj+ puj)T

Assume Mie-Gr¨uneisen equation of state

p(ρ, e) = p(ρ) + Γ(ρ)ρ [e − e(ρ)]

(35)

Sod Riemann problem: Exact solution

0.2 0.4 0.6 0.8

0 0.05 0.1 0.15 0.2

Density

Rarefaction→

contact→

Shock

0.2 0.4 0.6 0.8

0 0.05 0.1 0.15 0.2

Pressure (Velocity)

Rarefaction→ Shock

0 0.2 0.4 0.6 0.8 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t = 0 t=0.15

Density

0 0.2 0.4 0.6 0.8 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t = 0 t=0.15

Pressure

(36)

Sod Riemann problem: Interface capturing solution

0.2 0.4 0.6 0.8

0 0.05 0.1 0.15 0.2

Density

Rarefaction→

contact→

Shock

0.2 0.4 0.6 0.8

0 0.05 0.1 0.15 0.2

Pressure (Velocity)

Rarefaction→ Shock

0 0.2 0.4 0.6 0.8 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Numerical Exact

Density

0 0.2 0.4 0.6 0.8 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Numerical Exact

Pressure

(37)

Sod Riemann problem: THINC solution

0.2 0.4 0.6 0.8

0 0.05 0.1 0.15 0.2

Density

Rarefaction→

contact→

Shock

0.2 0.4 0.6 0.8

0 0.05 0.1 0.15 0.2

Pressure (Velocity)

Rarefaction→ Shock

0 0.2 0.4 0.6 0.8 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

THINC Exact

Density

0 0.2 0.4 0.6 0.8 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

THINC Exact

Pressure

(38)

Sod Riemann problem: Anti-diffusion solution

0.2 0.4 0.6 0.8

0 0.05 0.1 0.15 0.2

Density

Rarefaction→

contact→

Shock

0.2 0.4 0.6 0.8

0 0.05 0.1 0.15 0.2

Pressure (Velocity)

Rarefaction→ Shock

0 0.2 0.4 0.6 0.8 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

adf Exact

Density

0 0.2 0.4 0.6 0.8 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

adf Exact

Pressure

(39)

How interface sharpening ? Compressible flow

Novel elements (as compared to toy problem for incompressible flow):

1. Robust local interface indicator Physical principlesbased

i.e., Flag interface cells by checking jumps of physical quantities nearby (good in 1D, less effective in 2D) Tracer transportbased

i.e., Flag interface cells based on classical volume-fraction approach (more effective in 2D) 2. Consistent interfacesolution reconstruction

(algebraic-based) or post-sharpening (differential-based) to ρ,ρ~u,E, · · ·

(40)

Interface reconstruction: Compressible 1-phase flow

Assume equilibrium pressure p & velocity ~u, motion of interface (contact discontinuity) is governed by

∂ρ

∂t + ~u · ∇ρ = 0

~u

∂ρ

∂t + ~u · ∇ρ



= 0

~u · ~u 2

∂ρ

∂t + ~u · ∇ρ

 +

∂

∂t(ρe) + ~u · ∇ (ρe)



= 0

1. Density ρ is reconstructed by basic THINC scheme 2. Momentum ρ~uis reconstructed by ~u times density in

part 1 (see second equation)

3. Total energy E is reconstructed by corrections on total kinetic & internal energy (see third equation)

(41)

THINC interface sharpening: Compressible flow

In each time step, our THINC-based interface-sharpening algorithm for compressible flow consists:

1. Reconstruct piecewise polynomialq˜i(x, tn) based on MUSCL/WENO reconstruction procedure from cell average {Qn} at time tn

2. Modify ˜qi(x, tn) for interface cells using variant of THINC scheme from Qn

3. Construct spatial discretization using interpolated initial data from {˜qi(x, tn)} obtained in steps 1 & 2

4. Employ semi-discrete method to update Qn from current time to next Qn+1 over time step ∆t

(42)

Anti-diffusion: Compressible flow

Anti-diffusion model for compressible 1-phaseflow is

tρ + div (ρ~u) = 1 µI

Dρ

t(ρ~u) + div (ρ~u ⊗ u) + ∇p = 1 µI

Dρ~u

tE + div (E~u + p~u) = 1 µI

DE

Dρ:= −HI∇ · (εd∇ρ)

Dρu := u Dρ, DE :=hu · u

2 + ∂ρ(ρe)i Dρ

HI : Interface indicator =

 1 if interface cell, 0 otherwise

(43)

Anti-diffusion method

Anti-diffusion model in compact form

tq + divf (q) = 1 µI

Dq

with q, f, &Dq defined from Euler equations accordingly In each time step, fractional step is used

1. Solvehomogeneous equationwithout source terms

tq + divf (q) = 0 by state-of-the-art solver

2. Interface-sharpening stepover pseudo-time

τq = Dα, τ = t/µI

by explicit solver, for example

(44)

Compressible 2-phase flow: 7-equation model

7-equation non-equilibrium model of Baer & Nunziato (1986)

t(αρ)1+ div (αρ~u)1 = 0

t(αρ~u)1+ div (αρ~u ⊗ ~u)1+ ∇(αp)1 =pI∇α1+λ(~u2− ~u1)

t(αE)1+ div (αE~u + αp~u)1 =

pI~uI · ∇α1−νpI(p1− p2) +λ~uI · (~u2− ~u1)

t(αρ)2+ div (αρ~u)2 = 0

t(αρ~u)2+ div (αρ~u ⊗ ~u)2+ ∇(αp)2 = −pI∇α1−λ(~u2− ~u1)

t(αE)2+ div (αE~u + αp~u)2 =

−pI~uI · ∇α1+νpI(p1 − p2) −λ~uI· (~u2− ~u1)

tα1+~uI · ∇α1 =ν(p1− p2) Saturation condition α1 + α2 = 1 Equation of state pkk, ek), k = 1, 2

(45)

pI & ~uI: interfacial pressure & velocity

Baer & Nunziato (1986): pI = p2, ~uI = ~u1

Saurel & Abgrall (JCP 1999, JCP 2003) pI = α1p1+ α2p2, ~uI = α1ρ1~u1+ α2ρ2~u2

α1ρ1+ α2ρ2

pI = p1/Z1+ p2/Z2

1/Z1+ 1/Z2

, ~uI = ~u1Z1+ ~u2Z2

Z1+ Z2

, Zk = ρkck

ν = SI

Z1+ Z2

, λ = SIZ1Z2

Z1+ Z2

, SI(Interfacial area) ν & λ: relaxation parameters that express rates at which pressure & velocity toward equilibrium respectively

(46)

This non-equilibrium model can be used to simulate 1. Mixtures with different phasic pressures, velocities,

temperatures 2. Material interfaces

3. Permeable interfaces (i.e., interfaces separating a cloud of dispersed phases such as liquid drops or gases)

4. Cavitation if it is modeled as a simplified mechanical relaxation process, occurring at infinite rate µ → ∞ &

not modeled as a mass transfer process

(47)

Reduced 5-equation model

Kapila et al. 2001, Murrone et al. 2005, & Saurel et al. 2008 showed in asymptotic limits of λ & ν → ∞ i.e., flow towards mechanical equilibrium: ~u1 = ~u2 = ~u&p1 = p2 = p,

7-equation model reduces to 5-equation model

t1ρ1) + div (α1ρ1~u) = 0

t2ρ2) + div (α2ρ2~u) = 0

t(ρ~u) + div (ρ~u ⊗ ~u) + ∇p = 0

tE + div (E~u + p~u) = 0

tα1+ ~u · ∇α1 =

 K2− K1

K11+ K22



div(~u), Ki = ρic2i

(48)

Reduced 5-equation model

Kapila et al. 2001, Murrone et al. 2005, & Saurel et al. 2008 showed in asymptotic limits of λ & ν → ∞ i.e., flow towards mechanical equilibrium: ~u1 = ~u2 = ~u&p1 = p2 = p,

7-equation model reduces to 5-equation model

t1ρ1) + div (α1ρ1~u) = 0

t2ρ2) + div (α2ρ2~u) = 0

t(ρ~u) + div (ρ~u ⊗ ~u) + ∇p = 0

tE + div (E~u + p~u) = 0

tα1+ ~u · ∇α1 =

 K2− K1

K11+ K22



div(~u), Ki = ρic2i Equilibrium (mixture) pressure psatisfies

p = ρe − X2

k=1

αkρke,kk) + X2 k=1

αk

p,kk) Γkk)

! X2

k=1

αk

Γkk)

(49)

Reduced 5-equation model is hyperbolicwith non-monotonic equilibrium sound speed ceq:

1

ρc2eq = α1

ρ1c21

+ α2

ρ2c22

(Wood’s formula) yielding stiffness in equations & numerical solver

0 0.2 0.4 0.6 0.8 1

102 103

αwater ceq

2-phase (air-water)

(50)

5 -equation transport model

For nearly single-phase flow, where α1 ≈ 0 or 1, Allaire, Clerc,

& Kokh (JCP 2002) proposed using

t1ρ1) + div (α1ρ1~u) = 0

t2ρ2) + div (α2ρ2~u) = 0

t(ρ~u) + div (ρ~u ⊗ ~u) + ∇p = 0

tE + div (E~u + p~u) = 0

tα1+ ~u · ∇α1 =0

Mixture pressure p computed in same manner as before Phasic entropy Sk satisfies relation

∂p1

∂S1



ρ1

DS1

Dt −

∂p2

∂S2



ρ2

DS2

Dt = ρ1c21− ρ2c22

div(~u) 6= 0

(51)

Model is hyperbolic, but with monotone frozen sound speed

ρc2frozen = X2 k=1

αkρkc2k

0 0.2 0.4 0.6 0.8 1

101 102 103 104

µ−equil frozen

αwater

ceq&cfrozen

(52)

Interface reconstruction: 5-equation model

Assume equilibrium pressure p, velocity ~u, &phasic density ρk

for each interface cell

1. Volume fraction α1 is reconstructed by basic THINC scheme, denoted byα˜1

2. Reconstructphasic & mixture density αiρi & ρ by g

αiρi =α˜iρi, i = 1, 2, ρ˜=α˜1ρ1+ (1 −α˜12

3. Reconstructmomentum ρ~u by fρ~u = ˜ρ~u

4. Reconstructtotal energy E by E˜ = 1

2ρ~u · ~u +˜ α˜1ρ1e1 + (1 −α˜12e2

(53)

5 -equation transport model: Anti-diffusion

5-equation transport model with anti-diffusion

t1ρ1) + div (α1ρ1~u) = 1 µI

Dα1ρ1

t2ρ2) + div (α2ρ2~u) = 1 µIDα2ρ2

t(ρu) + div (ρ~u ⊗ ~u) + ∇p = 1 µI

Dρu

tE + div (E~u + p~u) = 1 µI

DE

tα1 + ~u · ∇α1 = 1 µI

Dα1

Exist two ways to set Dz,z = α1ρ1, . . . , α1, in literature

(54)

1. α-ρ based (Shyue 2011)

Dα1 :=−∇ · (εd∇α1), Dαkρk :=−HI∇ · (εd∇αkρk) Dρ:=

X2 k=1

Dαkρk, Dρ~u := ~uDρ, K = 1 2~u · ~u DE := KDρ+

X2 k=1

αkρkkek)Dαkρk + X2 k=1

ρkekDαk

2. α-based only (So, Hu, & Adams JCP 2012)

Dα1 :=−∇ · (εd∇α1), Dαkρk :=ρkDαk, Dα2 := −Dα1

Dρ :=

X2 k=1

Dαkρk, Dρ~u := ~uDρ, DE := KDρ+ X2 k=1

ρkekDαk

Dα1 := ∇ · [(εc∇α1· ~n − α1(1 − α1)) ~n] applicable

(55)

Shock(morb)-contact(moly) interaction

With THINC Without THINC

(56)

With THINC Pressure

Without THINC Pressure

(57)

With THINC Without THINC

(58)

With THINC Pressure

Without THINC Pressure

(59)

5 -equation model: Axisymmetric case

Axisymmetric version of reduced 5-equation model reads

t(A(x)α1ρ1) + ∂x(A(x)α1ρ1u) = 0

t(A(x)α2ρ2) + ∂x(A(x)α2ρ2u) = 0

t(A(x)ρu) + ∂x A(x)ρu2

+ A(x)∂xp = 0

t(A(x)E) + ∂x(A(x)Eu + A(x)pu) = 0

tα1+ ∂x1u) = α1K¯ K1

xu +

1K¯ K1

− α1

A(x) A(x)∂xu

where 1/ ¯K =P2

i=1αi/Ki, Ki = ρic2i

(60)

Spherical UNDEX (Wardlaw)

−1 −0.5 0 0.5 1 −1

−0.5 0

0.5 1

−1

−0.8

−0.6

−0.4

−0.2 0 0.2 0.4 0.6 0.8 1

water explosive

(61)

Spherical UNDEX: Initial phase

0 5 10 15 20

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

t=5.859e−6s t=13.12e−6s t=21.90e−6s t= 32.36e−6s t=44.64e−6s t=58.81e−6s

Density

(62)

Spherical UNDEX: Shock-contact interaction phase

0 10 20 30 40 50 60

0 0.2 0.4 0.6 0.8 1 1.2 1.4

t=93.05e−6s t=135.9e−6s t=188.4e−6s t=252.0e−6s

(63)

Spherical UNDEX: Incompressible phase

0 20 40 60 80 100 120 140 160

0 0.2 0.4 0.6 0.8 1 1.2 1.4

t=420.0e−6s t=528.8e−6s t=658.1e−6s t=811.4e−6s

(64)

Spherical UNDEX: bubble collapse & rebound

0 20 40 60 80 100

10−3 10−2 10−1 100 101

x

t=0.2970e−1s t=0.3004e−1s t=0.3046e−1s t=0.3122e−1s

(65)

Spherical UNDEX test: Diagnosis

0 5 10 15 20 25 30

0 5 10 15 20 25 30 35 40 45 50 55

with THINC with antiD

Bubble radius (cm)

time (ms)

0 5 10 15 20 25 30

105 106 107 108 109 1010 1011

with THINC with antiD

Interface pressure (dyn)

time (ms)

(66)

Spherical UNDEX test: Diagnosis

Table: Quantitative study of maximum bubble radius rmax &

period of bubble oscillation Tb for spherical underwater explosion rmax(cm) error (%) Tb(ms) error (%)

Experiment 48.10 0 29.8 0

Incompressible 66.49 38.2 39.1 31.2

Luo et al. 48.75 1.4 29.7 0.3

Wardlaw 46.40 3.5 29.8 0

THINC 48.17 0.1 29.1 2.3

Anti-diffusion 48.57 0.1 29.5 1.1

(67)

Underwater explosions: cylindrical wall

High pressure gaseous explosive in water (cylindrical case)

water

explosive

(68)

t = 30µs

shock

reflected rarefaction reflected shock

t = 45µs cavitation

interface

(69)

t = 60µs

cavitation

t = 120µs

cavitation

(70)

0 20 40 60 80 100 120 0

2000 4000 6000 8000

With anti−difusion Without−anti−diffusion

0 20 40 60 80 100 120

−10 0 10 20 30 40 50 60

With anti−difusion Without−anti−diffusion

Pressure(atm)Velocity(m/s)

Time (µs) cavi cutoff

cavi collapse & reload

(71)

6 -equation model: Alternative to 5-equation model

Non-equilibrium 6-equation model of Saurel et al. (JCP 2009):

t1ρ1) + div (α1ρ1~u) = 0

t2ρ2) + div (α2ρ2~u) = 0

t(ρ~u) + div (ρ~u ⊗ ~u) + ∇ (α1p1+ α2p2) = 0

t1ρ1e1) + div (α1ρ1e1~u) + α1p1∇ · ~u =−pIν (p1− p2)

t2ρ2e2) + div (α2ρ2e2~u) + α2p2∇ · ~u =pIν (p1− p2)

tα1+ ~u · ∇α1 =ν (p1− p2)

Model is hyperbolic with monotone frozen sound speed & is equivalent to reduced 5-equation model asymptotically as ν → ∞ (i.e., p1 → p2)

(72)

Pelanti & Shyue (2012) proposed

t1ρ1) + div(α1ρ1~u) = 0

t2ρ2) + div(α2ρ2~u) = 0

t(ρ~u) + div(ρ~u ⊗ ~u) + ∇ (α1p1+ α2p2) = 0

t1E1) + div (α1E1~u + α1p1~u) +B (q, ∇q)=−νpI (p1− p2)

t2E2) + div (α2E2~u + α2p2~u) −B (q, ∇q)=νpI (p1− p2)

tα1+ ~u · ∇α1 =ν (p1− p2)

B = −~u ((Y2p1+ Y1p2) ∇α1+ α1Y2∇p1− α2Y1∇p2)

Use phasic total energy instead of phasic internal energy;

numerically easy to retain mixture total energy consistency

(73)

Interface reconstruction: 6-equation model

Assume equilibrium pressure p, velocity ~u, &phasic density ρk for each interface cell again

1. Reconstructvolume fraction α1, phasic density αiρi, total density ρ, momentum ρ~u, in same manner as for

5-equation model

2. Reconstructphasic total energy αiEi by αgiEi = 1

2α˜iρi~u · ~u +α˜iρiei

(74)

6 -equation model: Anti-diffusion

t1ρ1) + div(α1ρ1~u) = 1 µI

Dα1ρ1

t2ρ2) + div(α2ρ2~u) = 1 µI

Dα2ρ2

t(ρ~u) + div(ρ~u ⊗ ~u) + ∇ (α1p1+ α2p2) = 1 µI

Dρu

t1E1) + div (α1E1~u + α1p1~u) + B (q, ∇q) =

− νpI(p1− p2) + 1 µI

Dα1E1

t2E2) + div (α2E2~u + α2p2~u) − B (q, ∇q) = νpI (p1− p2) + 1

µI

Dα2E2

tα1+ ~u · ∇α1 = ν (p1− p2) + 1 µI

Dα1

(75)

Write 6-equation model in compact form as

tq + div(f (q)) + w(q, ∇q) = ψµI(q) + ψν(q)

Compute approximate solution based on fractional step:

1. Homogeneous hyperbolic step

tq + div(f (q)) + w(q, ∇q) = 0 2. Source-terms relaxationstep

tq = ψµI(q) + ψν(q)

(76)

Pressure relaxation ν → ∞

Continue by considering pressure relaxationwith

tq = ψν(q), as ν → ∞ Current ODE system is

t(αρ)1 = 0

t(αρ~u)1 = 0

t(αρE)1 =−νpI(p1− p2)

t(αρ)2 = 0

t(αρ~u)2 = 0

t(αρE)2 =νpI (p1− p2)

tα1 =ν (p1− p2)

(77)

Combining energy & volume fraction equations, we have

t(αρE)k= −pItαk

yielding (after using mass & momentum equations)

t(αρe)k = −pItαk or αkρktek = −pItαk

Integration wrt t over ∆t, we have αkρk(ek− ek0) = −

Z αk

αk0

pIk = −¯pIk− αk0) or

ek = ek0− ¯pI

 1 ρk

− 1 ρk0



, k = 1, 2

(78)

Combining EOS ek(¯pI, ρk)with ek = ek0− ¯pI

 1 ρk − 1

ρk0

 , we find phasic density ρk as a function of ¯pI, i.e.,

ρk(¯pI) , k = 1, 2 Use saturation condition

1 = α1ρ1

ρ1(¯pI) + α2ρ2

ρ2(¯pI)

leads to algebraic equation for p¯I (relaxed pressure)

Having relaxed p¯I = p1 = p2 & so ρk, αk, conservative vector q can be updated (EOS should be imposed)

(79)

Future perspective I

Consider 6-equation model with heat & mass transfer of form

t1ρ1) + div(α1ρ1~u) =m˙

t2ρ2) + div(α2ρ2~u) = −m˙

t(ρ~u) + div(ρ~u ⊗ ~u) + ∇ (α1p1+ α2p2) = 0

t1E1) + div (α1E1~u + α1p1~u) + B (q, ∇q) =

− νpI(p1− p2) +Q + eI

t2E2) + div (α2E2~u + α2p2~u) − B (q, ∇q) = νpI(p1− p2)−Q − eI

tα1+ ~u · ∇α1 = µ (p1− p2) + m˙ ρI

(80)

Assume µ, θ, ν → ∞: instantaneous relaxation effects 1. Volumetransfer via pressure relaxation: µ (p1− p2)

µexpresses rate toward mechanical equilibrium p1 → p2,

& isnonzero in all flow regimes of interest 2. Heattransfer via temperature relaxation:

Q := θ (T2− T1)

θexpresses rate towards thermal equilibrium T1→ T2, 3. Mass transfer viathermo-chemical relaxation:

˙

m := ν (g2− g1)

ν expresses rate towards diffusive equilibrium g1 → g2, &

isnonzero only at 2-phase mixture& metastable state, i.e.,

ν =

∞ ǫ1≤ α1 ≤ 1 − ǫ1 &Tliquid> Tsat

0 otherwise

(81)

Assume µ, θ, ν → ∞: instantaneous relaxation effects 1. Volumetransfer via pressure relaxation: µ (p1− p2)

µexpresses rate toward mechanical equilibrium p1 → p2,

& isnonzero in all flow regimes of interest 2. Heattransfer via temperature relaxation:

Q := θ (T2− T1)

θexpresses rate towards thermal equilibrium T1→ T2, 3. Mass transfer viathermo-chemical relaxation:

˙

m := ν (g2− g1)

ν expresses rate towards diffusive equilibrium g1 → g2, &

isnonzero only at 2-phase mixture& metastable state, i.e.,

ν =

∞ ǫ1≤ α1 ≤ 1 − ǫ1 &Tliquid> Tsat

0 otherwise

Liquid-vapor phase change depends strongly on numerical resolution of αk

(82)

Dodecane 2-phase Riemann problem

Saurel et al. (JFM 2008) & Zein et al. (JCP 2010):

Liquid phase: Left-hand side (0 ≤ x ≤ 0.75m)

v, ρl, u, p, αv)L = 2kg/m3, 500kg/m3, 0, 108Pa, 10−8 Vapor phase: Right-hand side (0.75m < x ≤ 1m)

v, ρl, u, p, αv)R = 2kg/m3, 500kg/m3, 0, 105Pa, 1 − 10−8 ,

Liquid Vapor

← Membrane

(83)

Dodecane 2-phase problem: Phase diagram

10−4 10−3 10−2 10−1 100 101 102 103

101 102 103 104 105 106 107 108

Liquid Vapor

2-phase mixture

Saturation curve →

v

p

(84)

Dodecane 2-phase problem: Phase diagram

Wave path in p-v phase diagram

10−4 10−3 10−2 10−1 100 101 102 103

101 102 103 104 105 106 107 108

Liquid Vapor

2-phase mixture

Saturation curve →

v

p

Isentrope

Hugoniot locus

(85)

Dodecane 2-phase problem: Sample solution

0 0.2 0.4 0.6 0.8 1

100 101 102 103

t = 0 t=473µs

Density (kg/m3)

0 0.2 0.4 0.6 0.8 1

−50 0 50 100 150 200 250 300 350

t = 0 t=473µs

Velocity (m/s)

0 0.2 0.4 0.6 0.8 1

104 105 106 107 108

t = 0 t=473µs

Pressure(bar)

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

t = 0 t=473µs

Vapor volume fraction

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

t = 0 t=473µs

Vapor mass fraction

4-wave structure:

Rarefaction, phase, contact, &

shock

(86)

Dodecane 2-phase problem: Sample solution

Allphysical quantities arediscon- tinuous across phase boundary

(87)

Future perspective II

Consider barotropic1-pressure, 1-velocitycompressible 2-phase flow model with drift flux approximation

t1ρ1) + div(α1ρ1~u) = div (ρY1Y2~uR) (Continuity α1ρ1)

t2ρ2) + div(α2ρ2~u) = −div (ρY1Y2~uR) (Continuity α2ρ2)

t(ρ~u) + div(ρ~u ⊗ ~u) + ∇p= 0 (Momentum)

(88)

Future perspective II

Consider barotropic1-pressure, 1-velocitycompressible 2-phase flow model with drift flux approximation

t1ρ1) + div(α1ρ1~u) = div (ρY1Y2~uR) (Continuity α1ρ1)

t2ρ2) + div(α2ρ2~u) = −div (ρY1Y2~uR) (Continuity α2ρ2)

t(ρ~u) + div(ρ~u ⊗ ~u) + ∇p= 0 (Momentum) Equilibrum pressure p computed by solving

α1+ α2 = α1ρ1

ρ1(p) + α1ρ1

ρ2(p) = 1

(89)

Future perspective II

Consider barotropic1-pressure, 1-velocitycompressible 2-phase flow model with drift flux approximation

t1ρ1) + div(α1ρ1~u) = div (ρY1Y2~uR) (Continuity α1ρ1)

t2ρ2) + div(α2ρ2~u) = −div (ρY1Y2~uR) (Continuity α2ρ2)

t(ρ~u) + div(ρ~u ⊗ ~u) + ∇p= 0 (Momentum) Equilibrum pressure p computed by solving

α1+ α2 = α1ρ1

ρ1(p) + α1ρ1

ρ2(p) = 1 Darcy law model for relative velocity~uR assumes

~uR= 1 λα1α2

2− ρ1

ρ



∇p

(90)

Future perspective II

Consider barotropic1-pressure, 1-velocitycompressible 2-phase flow model with drift flux approximation

t1ρ1) + div(α1ρ1~u) = div (ρY1Y2~uR) (Continuity α1ρ1)

t2ρ2) + div(α2ρ2~u) = −div (ρY1Y2~uR) (Continuity α2ρ2)

t(ρ~u) + div(ρ~u ⊗ ~u) + ∇p= 0 (Momentum) Equilibrum pressure p computed by solving

α1+ α2 = α1ρ1

ρ1(p) + α1ρ1

ρ2(p) = 1 Darcy law model for relative velocity~uR assumes

~uR= 1 λα1α2

2− ρ1

ρ



∇p Accurate resolution of dissipative source terms& so mathematical model requires good approximation of αk

(91)

Rather than solving saturation condition for p, we may consider model that includes volume fraction equation explicitly as

t1ρ1) + div(α1ρ1~u) = div (ρY1Y2~uR)

t2ρ2) + div(α2ρ2~u) = −div (ρY1Y2~uR)

t(ρ~u) + div(ρ~u ⊗ ~u) + ∇ (α1p1+ α2p2) = 0

tα1 + ~u · ∇α1− ρc2w α1α2

ρ1c21ρ2c22

ρ2c22− ρ1c21

div(~u) =

ρc2w α1α2

ρ1c21ρ2c22

1c21

α1ρ1

+ ρ2c22

α2ρ2



div(ρY1Y2~uR)

Here cw is Wood sound speed defined by 1

ρc2w = α1

ρ1c21

+ α2

ρ2c22

(Wood’s formula)

(92)

Water wave problem

Existence or non-existence of 2-bump solution in water wave via computer aided proof in 2-phase (air-water) direct numerical simulation

(93)

Future perspective III

Hyperelasticity flow · · ·

(94)

Future perspective III

Hyperelasticity flow · · ·

Thank you

參考文獻

相關文件

Key words: Compressible two-phase flow, Five-equation model, Interface sharpening, THINC reconstruction, Mie-Gr¨ uneisen equation of state, Semi-discrete wave propagation method..

Key words: Compressible two-phase flow, Five-equation model, Interface sharpening, THINC reconstruction, Mie-Gr¨ uneisen equation of state, Semi-discrete wave propagation method..

Weak solution for problems with shock &amp; rarefaction waves Interface indicator H I takes value zero away from interfacs, yielding standard compressible Euler equations

Solver based on reduced 5-equation model is robust one for sample problems, but is difficult to achieve admissible solutions under extreme flow conditions.. Solver based on HEM

Have shown results in 1 , 2 &amp; 3 D to demonstrate feasibility of method for inviscid compressible flow

Mathematical models: Average (fluid-mixture) type Numerical methods: Discontinuity-capturing type Sharp interface models &amp; methods (Prof. Xiaolin Li’s talk)D. Mathematical

Compute interface normal, using method such as Gradient or least squares of Youngs or Puckett Determine interface location by iterative bisection..

Interface positions at different instants: experimental (left) and numerical results computed without (Simulation 1, middle) and with (Simulation 2, right)