• 沒有找到結果。

Shock in air & R22 bubble interaction

N/A
N/A
Protected

Academic year: 2022

Share "Shock in air & R22 bubble interaction"

Copied!
56
0
0

加載中.... (立即查看全文)

全文

(1)

Eulerian

interface-sharpening methods for

compressible flow

Keh-Ming Shyue

Department of Mathematics National Taiwan University

(2)

Objective

Derive consistent interface-sharpening model & method for compressible (single & multiphase) flow problems

PDE-based approach

tq + ∇ · f (q) + B∇q = 1 µDq

Algebraic-based approach (with F. Xiao, Tokyo Tech.) 1. Sharp cell edge solution reconstruction

2. Solution update: MUSCL or semi-discretize scheme

(3)

Shock in air & R22 bubble interaction

Leftward-going Mach 1.22 shock wave in air over heavier R22 bubble

(4)

Shock air-R22 bubble (cont.)

With anti-diffusion WENO 5

(5)

Shock in air-R22 bubble (cont.)

With anti-diffusion WENO 5

(6)

Shock air-R22 bubble (cont.)

With anti-diffusion WENO 5

(7)

Shock air-R22 bubble (cont.)

With anti-diffusion WENO 5

(8)

Shock air-R22 bubble (cont.)

With anti-diffusion WENO 5

(9)

Shock air-R22 bubble (cont.)

With anti-diffusion WENO 5

(10)

Shock air-R22 bubble (cont.)

With anti-diffusion WENO 5

(11)

Shock air-R22 bubble (cont.)

With anti-diffusion WENO 5

(12)

Shock air-R22 bubble (cont.)

With anti-diffusion WENO 5

(13)

Shock air-R22 bubble (cont.)

With anti-diffusion With THINC

(14)

Shock air-R22 bubble (cont.)

Volume tracking (Shyue 2006) 2nd order

(15)

PDE-based interface sharpening

Incompressible 2-phase flow: PDE-based interface sharpening for volume-fraction transport

tα + u · ∇α = 1

µDα, µ ∈ lR ≫ 1

Artificial compression: Harten CPAM 1977, Olsson &

Kreiss JCP 2005

Dα := ∇ · [(D(∆x)∇α · ~n − α (1 − α)) ~n]

Anti-diffusion: So, Hu & Adams JCP 2011 Dα := −∇ · (D(u)∇α)

(16)

Model interface-only problem

Interface-only problem for compressible 1-phase Euler equations with constant pressure p, velocity u, & jump in density ρ across interfaces

tρ + ∇ · (ρu) = 0 (Mass)

t (ρu) + ∇ · (ρu ⊗ u + pIN) = 0 (Momentum)

tE + ∇ · (Eu + pu) = 0 (Energy) yielding basic transport equations for interfaces as

tρ + u · ∇ρ = 0 u (∂tρ + u · ∇ρ) = 0 u · u

2 (∂tρ + u · ∇ρ) + ∂t (ρe) + u · ∇ (ρe) = 0

(17)

Interface-only anti-diffusion model

Shyue (2011) proposed anti-diffusion model for density

tρ + u · ∇ρ = 1

µDρ, Dρ := −∇ · (D∇ρ)

To ensure velocity equilibrium for momentum

u(∂tρ + u · ∇ρ) = 1

µDρu, Dρu := u Dρ

& velocity-pressure equilibrium, for total energy

u · u

2 (∂tρ + u · ∇ρ) + ∂t (ρe) + u · ∇ (ρe) = 1

µDE, DE := hu · u

2 + ∂ρ(ρe)i Dρ

Mie-Grüneisen EOS p(ρ, e) = p(ρ) + Γ(ρ)ρ [e − e(ρ)]

(18)

1 -phase anti-diffusion model

To deal with shock waves, anti-diffusion model for compressible 1-phase flow

tρ + ∇ · (ρu) = 1 µDρ

t (ρu) + ∇ · (ρu ⊗ u + pIN) = 1

µDρu

tE + ∇ · (E~u + pu) = 1

µDE Dρ := −HI∇ · (D∇ρ) , Dρu := u Dρ, DE := hu · u

2 + ∂ρ(ρe)i Dρ HI : Interface indicator =

( 1 if near interface, 0 otherwise

(19)

Anti-diffusion method

Anti-diffusion model in compact form

tq + ∇ · f = 1 µDq with q, f, & Dq defined (not shown)

Fractional step method:

1. Solve homogeneous equation without source terms

tq + ∇ · f = 0

2. Iterate model equation with source terms

τq = Dq

to sharp layer; τ = µt (pseudo time)

(20)

Numerical interface-only problem

Consistency of numerical solution for interface-only problem Step 1: assume consistent approximation model equation without anti-diffusion,

smeared ρ & equilibrium u = un, p = pn

(may be difficult with highly nonlinear MG EOS)

Step 2: assume anti-diffusion for ρ is done consistently &

stably, yielding update ρ to ρn+1 & for momentum,

(ρu)n+1 := (ρu) + Dρu = (ρu) + uDρ

= (ρu) + u ρn+1 ρ = ρn+1u =⇒ un+1 = ρn+1u

ρn+1 = u

(21)

Numerical interface-only (cont.)

For total energy, En+1 := E + DE, i.e.,

(ρK + ρe)n+1 := (ρK + ρe) + (K + ∂ρ(ρe)) Dρ, K = u · u 2

Splitting kinetic & internal energy with MG EOS

(ρK)n+1 := (ρK) + K ρn+1 ρ = ρn+1K =⇒ Kn+1 = K

=⇒ un+1 = u (not true if u has transverse jump)

 p − p

Γ + ρe

n+1

:=  p − p

Γ + ρe



+ ∂ρ  p − p

Γ + ρe



ρn+1 ρ

=⇒ pn+1 = p (for linearized MG EOS only)

(22)

Numerical shock wave problems

Weak solution for problems with shock & rarefaction waves Interface indicator HI takes value zero away from interfacs, yielding standard compressible Euler equations in

conservation form

Step 1, use state-of-the-art shock capturing method for entropy-satisfying weak solutions

(23)

Implementation issues

Methods used here are very elementary, i.e.,

Step 1: Clawpack (or Wenoclaw/Sharpclaw) for

homogeneous equation over CFL-constrained ∆t Step 2: explicit 1-step method for anti-diffusion

Numerical regularization to ρ & Dρ

Diffusion coefficient D = D(u) (local in space & time) Time step (forward Euler) ∆τ ≤ min 

∆t, min

N

i=1 x2i 2N Dmax



Stopping criterion: Run 1 − 2 iteration currently HI is chosen based on checking jumps in ρ & p

(24)

Sod Riemann problem

High-resolution result with anti-diffusion

Ideal gas: p(ρ, e) = (γ − 1)ρe

0 0.5 1

0 0.2 0.4 0.6 0.8 1

0 0.5 1

0 0.2 0.4 0.6 0.8 1

0 0.5 1

0 0.2 0.4 0.6 0.8

Density Velocity 1 Pressure

x x

x

(25)

Aluminum impact problem

rest Al moving Al IC:

(ρ, u, p)L = 

4 × 103 kg/m3, 0 m/s, 7.93 × 109 Pa (ρ, u, p)R = 

2785 kg/m3, −2 × 103 m/s, 0 Pa

Mie-Grüneisen EOS with

Γ(ρ) = Γ0(1 − η)α, p(ρ) = ρ0c20η

(1 − sη)2 , e(ρ) = η 0

(p0 + p(ρ)) ρ0(kg/m3) c0 (m/s) s Γ0 α p0 e0

2785 5328 1.338 2.0 1 0 0

(26)

Aluminum impact (cont.)

High-resolution result with anti-diffusion at time t = 50µs

0 0.5 1

2.5 3 3.5 4 4.5

sharpen no sharpen exact

0 0.5 1

−2

−1.5

−1

−0.5 0

0 0.5 1

−5 0 5 10 15 20 25

Density (Mg/m3) Velocity (km/s) 30Pressure (GPa)

x x

x

(27)

1 -fluid multiphase anti-diffusion

Compressible multiphase: One-fluid anti-diffusion model

tρ + ∇ · (ρu) = 1 µDρ

t (ρu) + ∇ · (ρu ⊗ u + pIN) = 1

µDρu

tE + ∇ · (E~u + pu) = 1 µDE

tφj + u · ∇φj = ρdρφj∇ · u + 1

µDφj

Mixture pressure modeled by Mie-Grüneisen EOS:

φ1 = 1

Γ(ρ), φ2 = p(ρ)

Γ(ρ) , φ3 = ρe(ρ)

µ → ∞ reduces to fluid-mixture model (Shyue JCP 2001)

(28)

5 -equation 2-phase flow model

Unsteady, inviscid, compressible homogeneous 2-phase flow governed by 5-equation model

t1ρ1) + ∇ · (α1ρ1u) = 0 (Phasic 1 continuity)

t2ρ2) + ∇ · (α2ρ2u) = 0 (Phasic 2 continuity)

t (ρu) + ∇ · (ρu ⊗ u + pIN) = 0 (Momentum)

tE + ∇ · (Eu + pu) = 0 (Energy)

tα1 + u · ∇α1 = 0 (Volume fraction) Phasic pressure pk follows Mie-Grüneisen EOS

pkk, ek) = p,kk) + Γkkk 

ek − e,kk)

k = 1, 2

(29)

5 -equation model (cont.)

Isobaric closure leads to mixture pressure , i.e., Substitute p = p1 = p2 in ρe =

2

X

k=1

ρkek, yielding

p = ρe −

2

X

k=1

αkρke,kk) +

2

X

k=1

αk p,kk) Γkk)

! 2 X

k=1

αk Γkk)

Model is hyperbolic with mixture acoustic impedance Allaire et al. (JCP 2002)

ρc2 =

2

X

k=1

αkρkc2k, ck : phasic sound speed

(30)

5 -equation model (cont.)

In cavitated regions, p < psat, cutoff model Non-conservative energy correction

E := Esat =

2

X

k=1

αkkek)sat + ρK

cutoff phasic internal energy is

kek)sat = psat p,ksat)

Γksat) + ρsate,ksat)

α-based energy-preserving correction (Shyue 2012)

α1 := (α1)sat = ρe − 2e2)sat 1e1)sat 2e2)sat

(31)

5 -equation anti-diffusion model

Proposed 5-equation anti-diffusion model

t1ρ1) + ∇ · (α1ρ1u) = 1

µDα

1ρ1

t2ρ2) + ∇ · (α2ρ2u) = 1

µDα2ρ2

t (ρu) + ∇ · (ρu ⊗ u + pIN) = 1

µDρu

tE + ∇ · (Eu + pu) = 1

µDE

tα1 + u · ∇α1 = 1

µDα1

Exist two ways to set Dz, z = α1ρ1, . . . , α1, in literature

(32)

5 -equation anti-diffusion (cont.)

α-ρ based (Shyue 2011)

Dα1 := −∇ · (D∇α1), Dαkρk := HI∇ · (D∇αkρk), k = 1, 2 Dρ :=

2

X

k=1

Dαkρk, Dρu := uDρ,

DE := KDρ +

2

X

k=1

αkρkkek)Dαkρk +

2

X

k=1

ρkekDαk

α-based only (So, Hu, & Adams JCP 2012)

Dα1 := −∇ · (D∇α1), Dαkρk := ρkDαk, k = 1, 2, Dα2 := −Dα1 Dρ :=

2

X

k=1

Dαkρk, Dρu := uDρ, DE := KDρ +

2

X

k=1

ρkekDαk

Use D := ∇ · [(D∇α ·~n − α (1 − α )) ~n] (Shyue 2012)

(33)

5 -equation interface-compression

Shukla, Pantano & Freund (JCP 2010)

t 1ρ1) + ∇ · (α1ρ1u) = 0

t 2ρ2) + ∇ · (α2ρ2u) = 0

t (ρu) + ∇ · (ρu ⊗ u + pIN) = 0

tE + ∇ · (Eu + pu) = 0

tα1 + u · ∇α1 = 1

µn · ∇(D∇α1 · n α1 (1 − α1))

tρ + ∇ · (ρu) = 1

µHI1)n · (∇ (D∇ρ · n) − (1 − 2α1) ∇ρ)

Nonliner compression & linear diffusion for interface sharpening & stability

Method proposed there is unstable numerically

(34)

PDE-based interface sharpening

PDE-based interface-sharpening model in compact form

tq + ∇ · f + B∇q = 1 µDq with q, f, B, & Dq defined (not shown)

Fractional step method is used

1. Solve homogenous equation without source terms

tq + ∇ · f + B∇q = 0 2. Iterate model equation with source terms

τq = Dq

to sharp layer; τ = µt (pseudo time)

(35)

Numerical interface-only problem

Consistency of numerical solution for interface-only problem Step 1: assume consistent approximation model equation without anti-diffusion,

smeared (α1ρ1), (α2ρ2), α1 & equilibrium u = un, p = pn (can be done even with highly nonlinear MG EOS)

Step 2: update (α1ρ1), (α2ρ2), α1 to (α1ρ1)n+1, (α2ρ2)n+1, α1n+1 via anti-diffusion, & for momentum,

(ρu)n+1 := (ρu) + Dρu = (ρu) + uDρ =⇒ un+1 = u

(36)

Numerical interface-only (cont.)

For total energy, En+1 := E + DE, i.e., α-based

(ρK + ρe)n+1 := (ρK + ρe) + KDρ +

2

X

k=1

kek) Dαkρk

Splitting kinetic & internal energy with MG EOS

(ρK)n+1 := (ρK) + K ρn+1 ρ = ρn+1K =⇒ Kn+1 = K

2

X

k=1

kρkek)n+1 :=

2

X

k=1

kρkek) +

2

X

k=1

kek) αn+1k αk

2

X

k=1



αk  p − p,k

Γk + ρke,k

n+1

:=

2

X

k=1

 p − p,k

Γk + ρke,k



αn+1k

=⇒ pn+1 = p (for general MG EOS)

(37)

Piston-induced liquid drops depression

Liquid & vapor governed by stiffened gas EOS Piston velocity u = −100m/s

vapor

liquid liquid

← piston

(38)

Liquid drops depression

Vapor mass fraction Mixture pressure

t=2ms

(39)

Liquid drops depression (cont.)

Vapor mass fraction Mixture pressure

t=4ms

(40)

Liquid drops depression (cont.)

Vapor mass fraction Mixture pressure

t=6ms

(41)

Liquid drops depression (cont.)

Vapor mass fraction Mixture pressure

t=8ms

(42)

Liquid drops depression (cont.)

Vapor mass fraction Mixture pressure

t=10ms

(43)

Liquid drops depression (cont.)

Vapor mass fraction Mixture pressure

t=12ms

(44)

Liquid drops depression (cont.)

Vapor mass fraction Mixture pressure

t=14ms

(45)

Liquid drops depression (cont.)

Vapor mass fraction Mixture pressure

t=16ms

(46)

Liquid drops depression (cont.)

Vapor mass fraction Mixture pressure

t=18ms

(47)

Underwater explosions: cylindrical wall

High pressure gaseous explosive in water (cylindrical case)

water

explosive

(48)

UNDEX: cylindrical wall (cont.)

t = 30µs

shock

reflected rarefaction reflected shock

t = 45µs

cavitation

interface

(49)

UNDEX: cylindrical wall (cont.)

t = 60µs

cavitation

t = 120µs

cavitation

(50)

UNDEX: cylindrical wall (cont.)

0 20 40 60 80 100 120

0 2000 4000 6000 8000

With anti−difusion Without−anti−diffusion

0 20 40 60 80 100 120

−10 0 10 20 30 40 50 60

With anti−difusion Without−anti−diffusion

Pressure(atm) Velocity(m/s)

Time (µs)

cavi cutoff cavi collapse & reload

(51)

Algebraic-based interface sharpening

Incompressible flow: Algebraic-based interface sharpening CICSAM (Compressive Interface Capturing Scheme for Arbitrary Meshes): Ubbink & Issa JCP 1999

THINC (Tangent of Hyperbola for INterface Capturing):

Xiao, Honma & Kono Int. J. Numer. Meth. Fluids 2005 Improved THINC

Compressible flow: THINC-type interface sharpening 1. Cell edge solution reconstruction: THINC

2. Solution update: MUSCL or semi-discretize scheme

(52)

THINC interface sharpening

THINC reconstruction assumes

αi(x) = αmin + αmax αmin

2



1 + γ tanh



βx − xi−1/2

∆x x¯i



αmin = min (αi−1, αi+1) , αmax = max (αi−1, αi+1) , γ = signi+1 αi−1)

β measures sharpeness (given constant) & x¯i chosen by

αi = 1

∆x

Z xi+1/2 xi−1/2

αi(x) dx

Cell edges determined by

αi+1/2,L = αmin + αmax αmin

2



1 + γ tanh β + C 1 + C tanh β



αi−1/2,R = αmin + αmax αmin

(1 + γC) (C not shown)

(53)

Homogeneous-equilibrium THINC

With αi+1/2,L & αi−1/2,R obtained by THINC reconstruction Homogeneous-equilibrium reconstruction (analgously to α-based 5-equation anti-diffusion model)

1ρ1)i+1/2,L = ρ1,i α1,i+1/2,L − α1,i (α2ρ2)i+1/2,L = ρ2,i α2,i+1/2,L − α2,i

ρi+1/2,L = (α1ρ1)i+1/2,L + (α2ρ2)i+1/2,L (ρu)i+1/2,L = uiρi+1/2,L

Ei+1/2,L = Kiρi+1/2,L +

2

X

k=1

kek) i αk,i+1/2,L − αk,i

zi−1/2,R can be made in a similar manner

(54)

6 -equation anti-diffusion model

Anti-diffusion to 6-equation model (Pelanti & Shyue 2012)

t 1ρ1) + ∇ · (α1ρ1~u) = 1

µDα1ρ1

t 2ρ2) + ∇ · (α2ρ2~u) = 1

µDα2ρ2

t(ρ~u) + ∇ · (ρ~u ⊗ ~u) + ∇ (α1p1 + α2p2) = 1

µDρu

t 1E1) + ∇ · (α1E1~u + α1p1~u) + w (q, ∇q) = −νpI (p1 p2) + 1

µDα1E1

t 2E2) + ∇ · (α2E2~u + α2p2~u) − w (q, ∇q) = νpI (p1 p2) + 1

µDα2E2

tα1 + ~u · ∇α1 = ν (p1 p2) + 1

µDα1

w = −~u ((Y2p1 + Y1p2) ∇α1 + α1Y2p1 α2Y1p2)

(55)

Future perspective

Shape-preserving interface shapening on mapped grid Interface shapening to flow with physical sources

(usefulness ?)

tq + ∇ · f (q) + B∇q = ψ(q) + 1 µDq

Extension to low Mach weakly compressible flow Hybrid interface-sharpening & WENO towards high order for compressible turbulent flow

(56)

Thank you

參考文獻

相關文件

But due to the careful construction of the middle state solution for the contact discontinuity, which is extremely important for many difficult multicomponent problems with strong

Standard interface capturing results for toy problem, observing poor interface resolution.. Passive advection

Solver based on reduced 5-equation model is robust one for sample problems, but is difficult to achieve admissible solutions under extreme flow conditions.. Solver based on HEM

Have shown results in 1 , 2 &amp; 3 D to demonstrate feasibility of method for inviscid compressible flow problems. Department of Applied Mathematics, Ta-Tung University, April 23,

Have shown results in 1 , 2 &amp; 3 D to demonstrate feasibility of method for inviscid compressible flow

Such a simple energy functional can be used to derive the Poisson-Nernst-Planck equations with steric effects (PNP-steric equations), a new mathematical model for the LJ interaction

Finally, we want to point out that the global uniqueness of determining the Hartree po- tential (Theorem 2.5) and the determination of the nonlinear potential in the

Results for such increasing stability phenomena in the inverse source problems for the acoustic, electromagnetic, and elastic waves can be found in [ABF02, BLT10, BHKY18, BLZ20,