• 沒有找到結果。

High Precision Motion Control of Linear Motor Drive Systems Using Intelligent Cross-Coupled Control 王勇勝、陳昭雄

N/A
N/A
Protected

Academic year: 2022

Share "High Precision Motion Control of Linear Motor Drive Systems Using Intelligent Cross-Coupled Control 王勇勝、陳昭雄"

Copied!
2
0
0

加載中.... (立即查看全文)

全文

(1)

High Precision Motion Control of Linear Motor Drive Systems Using Intelligent Cross-Coupled Control

王勇勝、陳昭雄

E-mail: 384342@mail.dyu.edu.tw

ABSTRACT

This thesis proposes supervisory FLS control for the trajectory tracking of gantry type permanent magnet linear synchronous motor (PMLSM) systems. Although the adaptive fuzzy logic control (FLC) with adaptive laws assures system stability, the learning

procedure degrades its transient performance in the presence of uncertainties. The sliding-mode control (SMC) uses discontinuous control to compensate the bounded uncertainties. Nevertheless, this enhances the chattering. In order to overcome their drawbacks and take merits of the adaptive FLC and the SMC, a supervisory control law is proposed to integrate the adaptive FLC and the SMC by using a modulation function based on tracking errors. Simulations and experiments performed on a two-axis PMLSM system for different trajectory contours and loads demonstrate the effectiveness of the proposed control methodology, and its superiority is validated in comparison with the conventional PID control. The experimental setup is comprised by a host computer, MRC-6810 servo control cards, Cornet motor drives and a two-axis gantry type PMLSM. The MATLAB software is run for simulations, and the proposed control algorithm is implemented using the Microsoft Visual C + +.

Keywords : Permanent Magnet Linear Synchronous Motor (PMLSM)、Supervisory control、Adaptive FLC、Sliding-mode control (SMC)

Table of Contents

簽名頁 中文摘要………iii 英文摘要………

………iv 誌謝………v 目錄………

………vi 圖目錄………ix 表目錄………

………xiii 符號說明………xiv 第一章 緒論………

………1 1.1 研究動機………1 1.2 研究方法………

………2 1.3 文獻回顧………2 1.4 論文架構………4 第 二章 系統硬體架構介紹………5 2.1 龍門型永磁式線性同步馬達平台系統架構……5 2.2 線性同 步馬達種類和動作原理………26 2.2.1 線性馬達種類………26 2.2.2永磁式線性同步馬達動作 原理………30 第三章 多軸線性馬達的同動控制介紹………32 3.1 永磁式線性同步馬達數學模型………

…………32 3.1.1 d-q軸座標轉換………33 3.1.2 電氣的數學模型………41 3.1.3 機械的 數學模型………43 3.1.4 控制問題描述………43 3.2 多軸同動控制的原理………

………45 3.2.1 串聯式同動控制………45 3.2.2 並聯式同動控制………46 3.2.3 交叉耦合控制………47 第四章 監督式模糊控制系統設計………52 4.1 模糊邏輯系 統介紹………52 4.1.1 模糊歸屬函數………54 4.1.2 模糊規則庫………

………57 4.1.3 模糊推論………59 4.1.4 解模糊化………60 4.2 模糊 系統建模………61 4.3 監督式模糊控制系統………63 4.3.1 適應性模糊控制器…

………64 4.3.2 順滑控制器………67 4.3.3 監督式模糊控制系統………70 第五章 模擬、實驗與結果………75 5.1 龍門型兩軸線性滑台軌跡規劃………75 5.2 控制器設計………78 5.3 控制系統模擬………82 5.3.1 無負重控制系統 模擬………82 5.3.2 負重5kg控制系統模擬………90 5.4 控制系統實驗………

……97 5.4.1 無負重控制系統實驗………98 5.4.2 負重5kg控制系統實驗………105 第六章 結論與 未來研究………112 參考文獻………113

REFERENCES

[1]T. H. Liu, Y. C. Lee, and Y. H. Chang, “Adaptive controller designfor a linear motor control system,” IEEE Trans. Aerosp. Electron. Syst., vol. 40, no. 2, pp. 601–613, Apr. 2004.

[2]L. Xu and B. Yao, “Adaptive robust precision motion control of linear motors with negligible electrical dynamics: Theory and experiments,”

(2)

IEEE/ASME Trans. Mechatronics, vol. 6, no. 4, pp. 444–452, Dec. 2001.

[3]K. K. Tan, S. N. Huang, and T. H. Lee, “Robust adaptive numerical compensation for friction and Force ripple in permanent-magnet linear motors,” IEEE Trans. Magnetics, vol. 38, no. 1, pp. 221-228, 2002.

[4]D.L. Zhang, Y.P. Chen, Z.D. Zhou, W. Ai and X.D. Li, “Robust adaptive motion control of permanent magnet linear motors based on disturbance compensation,” IET Electr. Power Appl., vol.1, no.4, pp. 543–548, 2007.

[5]Y.S. Kung, “Design and implementation of a high-performance PMLSM drives using DSP chip,” IEEE Trans. Industr. Electr., vol. 55, no. 3, pp. 1341-1351, 2008.

[6]C.L. Lin and H.T. Huang, “Linear servo motor control using adaptive neural networks,” Proc Instn Mech Engrs Part I: J Systems and Control Engineering, vol. 216, pp.407-427, 2002.

[7]E. Kim, and S.G. Lee, “Output feedback tracking control of MIMO systems using a fuzzy disturbance observer and its application to the speed control of a PM synchronous motor,” IEEE Trans. Fuzzy Systems, vol. 13, no. 6, pp. 725-741, 2005.

[8]G.W. Younkin, W.D. Mcglasson, and R.D. Lorenz, “Considerations for low-inertia Ac drives in machine tool axis servo applications,” IEEE Trans. Industry Applications, vol. 27, no. 2, p.p. 262-267, 1991.

[9]H.Y. Chuang and C.H. Liu, A model-referenced adaptive control strategy for improving contour accuracy of multiaxis machine tools,” IEEE Trans. Industry Applications, vol. 28, no.1, pp. 22 1-227, 1992.

[10]K.Y. Zhu and B.P. Chen, “Cross-coupling design of generalized predictive control with reference models, “ Proc InstnMech Engrs Part I, vol 215, pp. 375-384, 2001.

[11]Z.Z. Liu, F.L. Luo, and M.A. Rahman, “Robust and precision motion control system of linear-motor direct drive for high-speed X–Y table positioning mechanism,” IEEE Trans. Industrial Electronics, vol. 52, no. 5, pp. 1357-1363, 2005.

[12]K. Huh, S. Han, and B. Lee, “Non-linear adaptive control of a linear-motor-driven X–Y table via estimating friction and ripple forces,”

Proc. IMechE Part C: J. Mechanical Engineering Science, vol. 222, pp.911-918, 2008.

[13]K.L. Barton and A.G. Alleyne, “A Cross-Coupled Iterative Learning Control Design for Precision Motion Control,” IEEE Trans. Control Systems Techn., vol. 16, no. 6, pp. 1218-1231, 2008.

[14]張友倫,”以Simulink模擬感應馬達的速度控制”,國立中央大學機械工程學系,碩士論文,民國99年6月。

[15]劉昌煥,”交流電機控制﹕向量控制與直接轉矩控制原理”,第三版,頁27-56,東華書局,民國94年。

[16]陳泓傑,”直接轉矩控制於永磁同步馬達之轉矩漣波改善研究”,國立中央大學電機工程研究所,碩士論文,民國96年7月。

[17]詹晉榮,”直流無刷馬達驅動系統實務設計”,大葉大學電機工程學系,碩士論文,民國92年6月。

[18]蔡凱宸,”以DSP為控制架構之線性馬達驅動系統研製”,大葉大學機電自動化研究所,碩士論文,民國95年6月。

[19]蘇裕新,”全數位化永磁同步馬達之直接轉矩控制驅動器研製”,國立中央大學電機工程研究所,碩士論文,民國95年7月。

[20]林法正、魏榮宗,”電機控制”,初版,頁284-298,蒼海書局,民國91年。

[21]楊君賢,”具機構耦合之雙線性伺服系統鑑別與控制”,國立成功大學機械工程學系,碩士論文,民國92年7月。

[22]李文昊,”交叉耦合控制在輪廓誤差之改善”,國立中山大學機械與機電工程研究所,碩士論文,民國93年6月。

[23]陳鳴吉,”交叉耦合控制在高速軌跡追蹤控制之設計與實作”,國立中山大學機械工程研究所,碩士論文,民國90年6月。

[24]周晏鈴,”應用動態模糊系統於旋轉式倒單擺系統之分析與控制”,大葉大學機電自動化研究所,碩士論文,民國93年6月。

參考文獻

相關文件

In the following we prove some important inequalities of vector norms and matrix norms... We define backward and forward errors in

Department of Mathematics – NTNU Tsung-Min Hwang November 30, 2003... Department of Mathematics – NTNU Tsung-Min Hwang November

In practice, ρ is usually of order 10 for partial pivot

n Media Gateway Control Protocol Architecture and Requirements.

2 System modeling and problem formulation 8 3 Adaptive Minimum Variance Control of T-S Fuzzy Model 12 3.1 Stability of Stochastic T-S Fuzzy

In this paper, by using Takagi and Sugeno (T-S) fuzzy dynamic model, the H 1 output feedback control design problems for nonlinear stochastic systems with state- dependent noise,

For MIMO-OFDM systems, the objective of the existing power control strategies is maximization of the signal to interference and noise ratio (SINR) or minimization of the bit

We shall show that after finite times of switching, the premise variable of the fuzzy system will remain in the universe of discourse and stability of the adaptive control system