• 沒有找到結果。

Vortex cusps

N/A
N/A
Protected

Academic year: 2022

Share "Vortex cusps"

Copied!
60
0
0

加載中.... (立即查看全文)

全文

(1)

Vortex cusps

Volker Elling

Academia Sinica (Taipei)

(2)

Motivation Incompressible 2d Euler:

ωt + v · ∇ω = 0 , ∇ · v = 0 , ω = ∇ × v Initial data

ω(t = 0, x) = |x|−1/µ˚ω(∡x)

Thm [E., Comm. Math. Phys. 2016]: existence of selfsimilar solutions with ω algebraic spiral patterns, if

1. dominant sign: R0˚ω 6= 0

2. sufficiently high periodicity: ˚ω 2π/N -periodic with N ≫ 1 +

+ +

+ -

- -

-

t = 0 t > 0 t ≫ 0 t ≫ 0

What if neither sign dominates?

1

(3)

Vorticity generation: Mach reflection From smooth initial data!

2

(4)

3

(5)

4

(6)

5

(7)

6

(8)

7

(9)

8

(10)

9

(11)

10

(12)

11

(13)

12

(14)

13

(15)

14

(16)

15

(17)

16

(18)

17

(19)

18

(20)

19

(21)

20

(22)

21

(23)

22

(24)

23

(25)

24

(26)

25

(27)

26

(28)

27

(29)

28

(30)

29

(31)

30

(32)

31

(33)

32

(34)

33

(35)

34

(36)

35

(37)

36

(38)

37

(39)

Simple special case

N vortex-sheet pairs, equal angles between center lines

N = 4

t = 0

ω < 0 ω > 0

at infinity

t = 1

Angle

t ≫ 1

Limit: pair angle at infinity small Self-similar: µ similarity exponent,

dx ∼ tµ

38

(40)

Self-similarity (Euler):

0 = ωt + v · ∇ω , 0 = ∇ · v , ω = ∇ × v Initial data ω(t = 0, x) = |x|−1/µ˚ω(∡x). Ansatz:

ω(t, x) = t−1ω(t−µx) , v(t,x) = tµ−1v(t−µx) Selfsimilar incompressible Euler:

0 = (v − µx

| {z }

=q

) · ∇ω − ω = ∇ · (v − µx

| {z }

=q

 + (2µ − 1)ω q pseudo-velocity: along it ω smoother than transversally

0 = ∇ · v −2µ = ∇ · q

39

(41)

Biot-Savart law Circulation: Γ(B) =

I

∂B v · dx =

Z

B ω dx dy

∂B Z

Z = x+iy, V = vx−ivy

∇ · v = 0

∇ × v = ω ⇒ V (Z) = 1 2πi

Z

dΓ(Z)

z }| {

ω(Z)dx dy Z − Z Point vortex: V (Z) = Γ

2πi(Z − Z) ∼ 1 r

v = (+κ/2, 0) Vortex sheet

v = (−κ/2, 0) Straight uniform vortex sheet:

← infinitesimal point vortices on line, equal spacing dx, equal dΓ = κ dx

V (Z) =

−κ/2, y = Im Z > 0 +κ/2, Im Z < 0

40

(42)

Cusp approximation: horizontal part

Γ(x) = RC ω(x)dx, C ccw loop enclosing upper sheet from 0 to x V (Z) = 1

2πi

Z Γx(x)dx Z − Z

ω(Z) =

vx = 0 vAx = 0

graph(x 7→ ˆy(x))

graph(x 7→ −ˆy(x)) z

−Γx(x)δ(y + ˆy(x)) Γx(x)δ(y − ˆy(x))

vSx = 12Γx(x) vIx = Γx(x)

Γx(x)δ(y − ˆy(x))

−Γx(x)δ(y + ˆy(x)) Z

Z

Distant blue points have nearby red point mirror image with equal ω of opposite-sign → strong cancellation

Nearby parts dominate V integral Horizontal velocity vx = Re V :

vx(x, y) ≈ vIx(x) = Γx(x) inside vx(x, y) ≈ vSx(x) = 1

x(x) on (upper) sheet

41

(43)

Mass conservation

−2µ = ∇ · q , q · n = 0 at sheet (q = v − µx)

triangle mouth cusp

Integrate over any “cusp triangle”:

0 > −2µ · triangle area =

Z

upper,lower sides q · n

| {z }

=0

ds +

Z

mouth qx(x, y)dy Approximation has vx(x, y) ≈ vx(x) and hence

qx(x, y) ≈ qx(x) < 0 only consider solutions with

qIx < 0 , qIx → 0 as x ց 0

42

(44)

Horizontal velocity modelling Selfsimilar vorticity equation:

S

y = 0 y = h A

I

(1 − 2µ)ω = (vx − µx)ω

x + (vy − µy)ω

y

(1−2µ)

Z h

0 ωdy =  Z h

0 (vx−µx)ωdy

x+h(vy − µy)ωih

| {z 0}

=0

For small pair angle vy, vAx, ˆy → 0, but vx not. So:

ω = vxy − vyx ≈ −vyx ⇒ (1 − 2µ)

Z h

0 vyxdy =  Z h

0 (vx − µx)vyxdy

x

=  Z h

0

(vx)2 2



y − µ(xvx)ydy

x

(1 − 2µ)[vx]hy=0 = [1

2(vx)2 − µxvx]hy=0

x

vAx ≈ 0 no h

only 0 (1 − 2µ)vIx = (vIx)2

2 − µxvIx

x

ODE for velocity vx = vIx(x) between sheets!

43

(45)

Horizontal velocity approximation

(1 − 2µ)vIx = (vIx)2

2 − µxvIx

x ⇒ (1 − µ)vIx = (vIx − µx)∂xvIx vx(x) = xu(x) ⇒ − ∂u

∂ log x = u(u − 1) u − µ

• Conservation: qIx ր 0 at cusp x ց 0, so u = vIx/x = o(1x).

• Need qIx = vIx − µx < 0 everywhere, so u < µ.

• At x → ∞ need vx = o(x) (← “uniqueness”), so u = o(1).

• Analysis: get O(1/x) blowup as x ց 0, or u → µ and hence qx → 0 at finite x > 0 (no use), unless u → 0 or u → 1.

• u = 0 unstable for any µ > 12.

• u = 1: for µ < 1: unstable.

For µ = 1: u = 1 absent (cancels).

For µ > 1: u = 1 asy. stable nontrivial vx = x + o(x) solutions.

Conclusion: only for µ > 1 have useful solution:

vIx(x) = x + ... , vSx(x) = 1

2x + ... , qSx(x) = (1

2 − µ)x + ...

44

(46)

Vertical velocity approximation 1: just zero

Assume vy inside and outside is tiny, can be neglected:

vSy ≈ 0

ODE: qS tangential to sheet graph ˆy, so yˆx = qSy

qSx = vSy − µˆy

vSx − µx ≈ 0 − µˆy

(12 − µ)x ⇒ (1

2 − µ)xˆyx ≈ −µˆy Solution:

ˆy = Cxµ/(µ−12) for x ≈ 0

Cusp exponent:

µ µ − 12

45

(47)

vy approximation 2: non-horizontal sheet

Sheet tangent: (1, ˆyx)/q1 + ˆyx2. To first order in ˆy: tangent (1, ˆyx) (vx, vy) = −12vIx(1, ˆyx)

(vx, vy) = 12vIx(1, ˆyx) (vx, vy) = 12vIx(1, −ˆyx)

(vx, vy) = −12vIx(1, −ˆyx)

vAy ≈ −vIxˆyx , vSy ≈ −1

2vIxx , vIy ≈ 0 ODE:

ˆyx = vSy − µˆy

vSx − µx ≈ −12xˆyx − µˆy

(12 − µ)x ⇒ (1 − µ)xˆyx ≈ −µˆy Cusp exponent:

µ µ − 1

46

(48)

vy approximation 3: mass conservation

Inside vIx = x + ..., i.e. vxx = 1 + ..., so by vxx+ vyy = 0 get vyy = −1 + ..., hence using vy = 0 at y = 0 integration to y = ˆy yields

vy ≈ −ˆy on lower side of sheet Since v jump to upper side is tangential,

vy ≈ −ˆy − vIxˆyx ≈ −ˆy − xˆyx on upper side and averaging yields

vSy ≈ −ˆy − 1

2xˆyx on sheet (p.v.) ODE

x = vSy − µˆy

vSx − µx ≈ −ˆy − 1

2xˆyx − µˆy(1

2 − µ)x (1 − µ)xˆyx = −(1 + µ)ˆy

Cusp exponent

µ + 1 µ − 1

47

(49)

Numerics Use Birkhoff-Rott equation (⇔ Euler for smooth sheets):

Z = Z(Γ) , (1 − 2µ)ΓZΓ = V − µZ , V =

Z

Z(Γ) − Z(Γ) Derivative: by finite differences

Approximate graph ˆy by points, interpolate by polynomial segments

→ can evaluate Biot-Savart integrals

• Linear interpolation: Convergence to cusp with µ/(µ − 1) exponent (2nd approx). Not very stable especially as µ ց 1.

• Quadratic/cubic/... interpolation: convergence to (µ + 1)/(µ − 1) exponent cusp (3rd approx). More robust if oscillation avoided.

• Linear/higher mixed:

V (Z) = 1 2πi

Z ω(Z)dx dy Z − Z

Enough to use quadratic/higher for same z segment and mirror image, for rest can use linear

48

(50)

Velocity field (zoom in):

49

(51)

µ = 1.3, φ = 10 numerics:

50

(52)

Pseudo-velocity q:

51

(53)

Increase φ to 25:

52

(54)

Increase φ to 40:

53

(55)

Increase to 80:

54

(56)

Maximum cusp angle at infinity φ Numerics:

µ φ

Spirals

Cusp

2.5 3 1.5 2

0.5 1 90 80 70 60 50 40 30 20 10 0

• for µ ր ∞, max angle ր 90

• for µ ց 1, max angle ց 0

• Cusp if µ > 1 and angle below max, otherwise: spirals

55

(57)

µ = 1.3 with φ = 80 solution:

56

(58)

Rotate: solution for µ = 1.3 with φ = 10, opposite circulation

57

(59)

Concluding remarks

• “Most” vortex cusps appear to have asymptotics vx = x + ... , y = xˆ α + ... , α = µ + 1

µ − 1 as x ց 0

• No cusps unless µ > 1 and sufficiently small angles-at-infinity and positive (ccw) circulation on the upper (second in ccw direction) sheet! (= inner v points away from cusp.)

Single Mach reflection does produce such circulation.

• For larger angles, µ ≤ 1, or negative circulation: numerics sug- gest non-cusp flows with algebraic spiral ends.

• µ = 1 key (compressible) but borderline: may need to superim- pose harmonic strain flow to modify exponent.

• Low-order numerics not necessarily stable, yield wrong exponent.

58

(60)

59

參考文獻

相關文件

• A knock-in option comes into existence if a certain barrier is reached.. • A down-and-in option is a call knock-in option that comes into existence only when the barrier is

 Combine: find closet pair with one point in each region, and return the best of three

Quantitative uniqueness of solutions to second order elliptic equations with singular lower order terms.. Quantitative uniqueness of solutions to second order elliptic equations

In part II (“Invariance of quan- tum rings under ordinary flops II”, Algebraic Geometry, 2016), we develop a quantum Leray–Hirsch theorem and use it to show that the big

Jing Yu, NTU, Taiwan Values at Algebraic Points.. Thiery 1995) Suppose the Drinfeld module ρ is of rank 1. Drinfeld modules corresponding to algebraic points can be defined over ¯

Quadratically convergent sequences generally converge much more quickly thank those that converge only linearly.

“Find sufficiently accurate starting approximate solution by using Steepest Descent method” + ”Compute convergent solution by using Newton-based methods”. The method of

denote the successive intervals produced by the bisection algorithm... denote the successive intervals produced by the