• 沒有找到結果。

王立民 游騰昇、王立民

N/A
N/A
Protected

Academic year: 2022

Share "王立民 游騰昇、王立民"

Copied!
2
0
0

加載中.... (立即查看全文)

全文

(1)

王立民 游騰昇、王立民

E-mail: 9314927@mail.dyu.edu.tw

ABSTRACT

We used p-type CuPc and n-type TPyP to grow up organic solar cells on ITO conductive glass by thermal evaporation. We have fabricated the sample No.S37 which is the best. The structure is ITO/TPyP(100 nm)/TPyP+CuPc(100 nm,2:1)/CuPc(100 nm)/Al.

We also measured this sample and know the ISC=1.73 mA ,VOC=0.73V ,and evaluated fill factor(FF)=86.9% ,efficiency(η)

=0.69%。Finally, we discussed the result what we got to find out the rule: the thick of n-type TPyP is thicker, or the ratio of TPyP in the mixture layer, we could get a better efficiency (η).

Keywords : organic solar cell ; CuPc ; TPyP ; absorption ; efficiency Table of Contents

目錄 封面內頁 簽名頁 授權書.........................iii 中文摘要..........

..............iv 英文摘要........................v 誌謝.......

................... vi 目錄..........................vii 圖目錄

.........................x 表目錄........................

.xii 第一章 緒論 1.1 研究背景..................1 1.1.1 有機太陽能電池發展現況.......

.1 1.1.2 蕭特基型太陽能電池..........2 1.1.3 P-N異質接面太陽能電池........2 1.1.4 NPC型太陽 能電池...........3 1.2 研究動機..................3 1.3 本文架構........

..........4 第二章 太陽能電池之原理 2.1太陽能電池元件物理.............6 2.1.1 太陽輻射

...............6 2.1.2 空氣質量(air mass,AM) ........6 2.1.3 p-n接面太陽能電池.....

.....7 2.1.4 I-V特性曲線.............8 2.2 轉換效率..................10 2.3 電學特性計算...............10 第三章 實驗方法與實驗分析設備 3.1 實驗方法...........

.......13 3.2蒸鍍原理與蒸鍍系統.............15 3.2.1 蒸鍍原理..............

.15 3.2.2 蒸鍍系統...............15 3.3 有機太陽能電池使用之實驗材料........17 3.3.1 玻 璃基材...............17 3.3.2 ITO薄膜...............18 3.3.3 p型有機材料-CuPc.

.........19 3.3.4 有機n型材料-TPyP..........20 3.4 實驗步驟...............

...21 3.4.1 玻璃基材之清潔............21 3.4.2 ITO的蝕刻..............22 3.4.3 有 機薄膜太陽能電池元件之成長.....22 3.4.4 元件製作過程.............23 3.5 實驗分析設備....

............25 3.5.1 X-ray繞射結構分析..........25 3.5.2 薄膜表面形貌分析.......

....25 3.5.3 薄膜厚度量測.............26 3.5.4 電流電壓量測.............26 3.5.5 光吸收率量測.............28 第四章 結果與分析 4.1 薄膜結構鑑定................29 4.2 表面形貌分析................30 4.2.1 不同厚度CuPc之表面形貌.......30 4.2.2不同厚 度TPyP之表面形貌.......32 4.3不同厚度CuPc與TPyP樣品的光吸收率量測...33 4.4有機太陽能電池之I-V Curve特徵曲線分析...35 4.4.1 不同厚度p/n結構有機太陽能電池....35 4.4.2 p/n結構與n/p結構有機太陽能電池 之I-V特性比較................39 4.4.3 雙層p/n結構元件與三層p/mixture layer/n結構有機太陽能電池 之I-V特性比較...41 4.4.4 不同混合層比例對p/mixture layer/n結構有機太陽能電池之I-V特性影響......43 4.5 二極體電性計算...............48 第五章 結論......................51 參 考文獻........................52

REFERENCES

參考文獻 [1] Lidgate, D., “Green energy Engineering science and education journal”, 1992: p. 221-227.

[2] Zweibel, K., “Harnessing solar cell-The photovoltaic challenge.” 1990.

[3] “上海化工半月刊”, 劉佩華, 田禾,1999年第12期.

[4] Schock, H.W., “Thin film photovoltaics.” Appl. Surf. science, 92(1996) 606-616.

[5] Stefan A. and Andreia M. “Electrical Properties of The ITO/CuPc/(CuPc+TpyP)/TpyP/Al Cells”, IEEE Trans. Appl. Sup. 76900(1997)

(2)

and IEEE Trans. Appl. Sup. 72996 (1997).

[6] Christoph J. Brabec ,N. Serdar Sariciftci ,and Jan C. Hummelen “Plastic Solar Cells”, Adv. Funt. Mater. 2001,11,No.1,Feb.

[7] J. Rostalski and D. Meissner, “Solar Energy Materials & Solar Cells”, 61(2000) 87-95.

[8] U. Bach, D. Lupo, P. Comte, J. E. Moser, F.Weissortel ,J. Salbeck, H. Spreitzer, M. Gratzel, “Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies”, Nature, 395, 8 (1998) 583.

[9] M. Granstrom, K. Petritsch, A. C. Arias, A. Lux, M. R. Andersson, R. H. Friend, “Laminated fabrication of polymeric photovoltaic diode”, Nature 395 17 (1998) 257.

[10] L. Schmidt-Mende, A. Fechtenkotter, K. Mullen, E. Moons, R. H. Friend, J. D. MacKenzie, ”Self-Organized Discotic Liquid Crystals for High-Efficiency Organic Photovoltaics”, Science 293 10 (2001) 1119.

[11] “半導體元件物理與製作技術”, 施敏著, 黃調元譯, 國立交通大學出版社, 2002.

[12] S. Antohe, L. Ion, N. Tomozeiu, T. Stoica, E. Barna., “Sol. Energy Mater. & Sol. Cells”, 62 (2000) 207-216.

[13] 張勁燕, “半導體製程設備”, 五南, 2002.

[14] 呂登復, “實用真空技術”, 黎明, 民國91年.

[15] 大葉大學電機工程系碩士班碩士論文, ”銦錫氧化物透明導電薄膜之成長與光電特性之研究-應用於發光二極體”, 2004.

[16] C. M. Joseph, K. N. Narayanan Unni, C. S. Menon, “Mater. Letts.”, 50 (2001) 18-20.

[17] C. M. Joseph, C. S. Menon, “Mater. Letts.” 52 (2002) 220-222.

[18] Masahiro Hiramoto, Hiroyuki Kumaoka, Masaaki Yokoyama, “Synthetic Metals”, 91 (1997) 77-79.

[19] Z. G. Ji, K. W. Wong, P. K. Tse, R. W. M. Kwok, W. M. Lau, “Thin Solid Films”, 402 (2002) 79-82.

[20] B. Djurisic, C. Y. Kwong, “Optics Communications”, 205 (2002) 155-162.

[21] “上海化工半月刊”, 劉佩華, 田禾, 1999年第11期.

[22] Tomas Markvart, “Solar Electricity”, John Wiley & Sons, 1997.

[23] Pallab Bhattacharya, “Semiconductor Optoelectronic Devices”, 全華, 2000.

參考文獻

相關文件

 A genre is more dynamic than a text type and is always changing and evolving; however, for our practical purposes here, we can take genre to mean text type. Materials developed

From these results, we study fixed point problems for nonlinear mappings, contractive type mappings, Caritsti type mappings, graph contractive type mappings with the Bregman distance

In BHJ solar cells using P3HT:PCBM, adjustment of surface energy and work function of ITO may lead to a tuneable morphology for the active layer and hole injection barrier

The relationship between these extra type parameters, and the types to which they are associated, is established by parameteriz- ing the interfaces (Java generics, C#, and Eiffel)

„ Start with a STUN header, followed by a STUN payload (which is a series of STUN attributes depending on the message type).

Microphone and 600 ohm line conduits shall be mechanically and electrically connected to receptacle boxes and electrically grounded to the audio system ground point.. Lines in

The remaining positions contain //the rest of the original array elements //the rest of the original array elements.

Type case as pattern matching on values Type safe dynamic value (existential types).. How can we