• 沒有找到結果。

Compiler II: Code Generation

N/A
N/A
Protected

Academic year: 2022

Share "Compiler II: Code Generation"

Copied!
14
0
0

加載中.... (立即查看全文)

全文

(1)

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org, Chapter 1: Compiler II: Code Generation slide 1

www.nand2tetris.org

Building a Modern Computer From First Principles

Compiler II: Code Generation

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org, Chapter 1: Compiler II: Code Generation slide 2

Course map

Assembler

Chapter 6 H.L. Language

&

Operating Sys.

abstract interface

Compiler

Chapters 10 - 11

VM Translator Chapters 7 - 8

Computer Architecture Chapters 4 - 5

Gate Logic

Chapters 1 - 3 Electrical

Engineering

Physics Virtual

Machine abstract interface

Software hierarchy

Assembly Language abstract interface

Hardware hierarchy Machine

Language abstract interface

Hardware Platform abstract interface

Chips &

Logic Gates abstract interface Human

Thought

Abstract design Chapters 9, 12

The big picture

(Chapter 11) Jack

Program

Toke-

nizer Parser

Code Gene -ration Syntax Analyzer

Jack Compiler

VM code XML code (Chapter 10)

1. Syntax analysis: extracting the semantics from the source code 2. Code generation: expressing the semantics using the target language

chapterThis previous

chapter

Syntax analysis

(review)

Class Bar {

method Fraction foo(int y) { var int temp; // a variable let temp = (xxx+12)*‐63;

...

...

<varDec>

<keyword> var </keyword>

<keyword> int </keyword>

<identifier> temp</identifier>

<symbol> ;</symbol>

</varDec>

<statements>

<letStatement>

<keyword> let </keyword>

<identifier> temp</identifier>

<symbol> =</symbol>

<expression>

<term>

<symbol> (</symbol>

<expression>

<term>

<identifier> xxx</identifier>

</term>

<symbol> + </symbol>

<term>

<int.Const.> 12 </int.Const.> 

</term>

</expression> 

...

Syntax analyzer

The code generation challenge:

Program = a series of operations that manipulate data

Compiler: converts each

“understood” (parsed) source operation and data item into corresponding operations and data items in the target language

(2)

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org, Chapter 1: Compiler II: Code Generation slide 5

Syntax analysis

(review)

Class Bar {

method Fraction foo(int y) { var int temp; // a variable let temp = (xxx+12)*‐63;

...

...

<varDec>

<keyword> var</keyword>

<keyword> int</keyword>

<identifier> temp</identifier>

<symbol> ; </symbol>

</varDec>

<statements>

<letStatement>

<keyword> let </keyword>

<identifier> temp</identifier>

<symbol> =</symbol>

<expression>

<term>

<symbol> (</symbol>

<expression>

<term>

<identifier> xxx</identifier>

</term>

<symbol> +</symbol>

<term>

<int.Const.> 12</int.Const.> 

</term>

</expression> 

...

Syntax analyzer

The code generation challenge:

Thus, we have to generate code for

o handling data

o handling operations

Our approach: morph the syntax analyzer (project 10) into a full-blown compiler:

instead of generating XML, we’ll make it generate VM code.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org, Chapter 1: Compiler II: Code Generation slide 6

Memory segments

(review)

Where iis a non-negative integer and segmentis one of the following:

static:  holds values of global variables, shared by all functions in the same class

argument:holds values of the argument variables of the current function local: holds values of the local variables of the current function this: holds values of the private (“object”) variables of the current

object

that: holds array values (silly name, sorry)

constant: holds all the constants in the range 0 … 32767 (pseudo memory segment)

pointer: used to anchor this and that to various areas in the heap temp: fixed 8-entry segment that holds temporary variables for

general use; Shared by all VM functions in the program.

VM memory Commands:

pop segment i push segment i

Memory segments

(review)

VM implementation on the Hack platform (review)

Basic idea: the mapping of the stack and the global segments on the RAM is easy (fixed);

the mapping of the function-level segments is dynamic, using pointers The stack:mapped on RAM[256 .. 2047];

The stack pointer is kept in RAM address SP

static:mapped on RAM[16 ... 255];

each segment reference static i appearing in a VM file named f is compiled to the assembly language symbol f.i (recall that the assembler further maps such symbols to the RAM, from address 16 onward)

Statics 3

12

. . .

4 5

14 15 0 1

13 2 THIS THAT SP LCL ARG

TEMP

255

. . .

16 General purpose

2047

. . .256

2048

Stack

. . . Heap

Host

RAM

(3)

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org, Chapter 1: Compiler II: Code Generation slide 9

VM implementation on the Hack platform (review)

local,argument: these method-level segments are stored in the stack, The base addresses of these segments are kept in RAM addresses LCL and ARG.

Access to the i-th entry of any of these segments is implemented by accessing RAM[segmentBase + i]

this,that:these dynamically allocated segments are mapped somewhere from address 2048 onward, in an area called

“heap”. The base addresses of these segments are kept in RAM addresses THIS, and THAT.

constant: a truly a virtual segment:

access to constant i is implemented by supplying the constant i.

pointer: contains this and that.

Statics 3

12

. . .

4 5

14 15 0

1

13 2 THIS THAT SP

LCL ARG

TEMP

255

. . .

16 General purpose

2047

. . .256

2048

Stack

. . . Heap

Host RAM

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org, Chapter 1: Compiler II: Code Generation slide 10

VM implementation on the Hack platform (review)

Global stack:

the entire RAM area dedicated for holding the stack

Working stack:

The stack that the current function sees

VM implementation on the Hack platform (review)

At any point of time, only one function (the current function) is executing; other functions may be waiting up the calling chain

Shaded areas:

irrelevant to the current function

The current function sees only the working stack, and has access only to its memory segments

The rest of the stack holds the frozen states of all the functions up the calling hierarchy.

Code generation example

method int foo() { var int x;

let x = x + 1;

...

<letStatement>

<keyword> let </keyword>

<identifier> x </identifier>

<symbol> = </symbol>

<expression>

<term>

<identifier> x </identifier>

</term>

<symbol> + </symbol>

<term>

<constant> 1 </constant> 

</term>

</expression>

</letStatement>

Syntax analysis

(note that x is the first local variable declared in the method)

push local 0 push constant 1 add

pop local 0 Code generation

(4)

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org, Chapter 1: Compiler II: Code Generation slide 13

Handling variables

When the compiler encounters a variable, say x, in the source code, it has to know:

What is x’s data type?

Primitive, or ADT (class name) ?

(Need to know in order to properly allocate RAM resources for its representation)

What kind of variable is x?

static, field, local, argument ?

( We need to know in order to properly allocate it to the right memory segment; this also implies the variable’s life cycle ).

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org, Chapter 1: Compiler II: Code Generation slide 14

Handling variables: mapping them on memory segments

(example) class BankAccount {

// class variables static int nAccounts;

static int bankCommission;

// account propetrties field int id;

field String owner;

field int balance;

method void transfer(int sum, BankAccount from, Date when){

var int i, j; // some local variables var Date due; // Date is a user-define type

let balance = (balance + sum) – commission(sum * 5);

// More code ...

}

The target language uses 8 memory segments

Each memory segment, e.g. static, is an indexed sequence of 16-bit values that can be referred to as static 0, static 1, static 2, etc.

Handling variables: mapping them on memory segments

(example) class BankAccount {

// class variables static int nAccounts;

static int bankCommission;

// account propetrties field int id;

field String owner;

field int balance;

When compiling this class, we have to create the following mappings:

The class variables nAccounts , bankCommission are mapped on static 0,1

The object fields id, owner, balance are mapped on this 0,1,2

Handling variables: mapping them on memory segments

(example) method void transfer(int sum, BankAccount from, Date when){

var int i, j; // some local variables var Date due; // Date is a user-define type

let balance = (balance + sum) – commission(sum * 5);

// More code ...

}

When compiling this class, we have to create the following mappings:

The class variables nAccounts , bankCommission are mapped on static 0,1

The object fields id, owner, balance are mapped on this 0,1,2

The argument variables sum, bankAccount, when are mapped on argument 0,1,2 The local variables i, j, due

are mapped on local 0,1,2.

(5)

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org, Chapter 1: Compiler II: Code Generation slide 17

Handling variables:

symbol tables class BankAccount {

static int nAccounts;

static int bankCommission;

field int id;

field String owner;

field int balance;

method void transfer(int sum, BankAccount from, Date when){

var int i, j;

var Date due;

let balance = (balance + sum) – commission(sum * 5);

// More code ...

}

How the compiler uses symbol tables:

The compiler builds and maintains a linked list of hash tables, each reflecting a single scope nested within the next one in the list

Identifier lookup works from the current symbol table back to the list’s head

(a classical implementation).

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org, Chapter 1: Compiler II: Code Generation slide 18

Handling variables:

managing their life cycle

Variables life cycle

staticvariables: single copy must be kept alive throughout the program duration

fieldvariables: different copies must be kept for each object localvariables: created on subroutine entry, killed on exit argument variables: similar to local variables.

Good news: the VM implementation already handles all these details !

120 80 radius: 50

x:

y:

color: 3

120 80 50 3012

3013 3014

3 3015

412 3012

...

...

High level program view RAM view

0

...

b following

compilation b

object

b object (Actual RAM locations of program variables are

run-time dependent, and thus the addresses shown here are arbitrary examples.)

Background:

Suppose we have an object named b of type Ball. A Ball has x, y coordinates, a radius, and a color.

Class Ball { 

field int x, y, radius, color; 

method void SetR(int r) { radius = r; } }

...

Ball b; b=Ball.new();

b.SetR(17);

Handling objects:

establishing access to the object’s fields

Class Ball { ...

void SetR(int r) { radius = r; } }

...

Ball b;

b.SetR(17);

Handling objects:

establishing access to the object’s fields

(6)

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org, Chapter 1: Compiler II: Code Generation slide 21

0 0 1

Virtual memory segments just before the operation b.radius=17:

3012 17 0

1 ... ... 12080

17 0 1 2 3012 0 1

3 3012

17 0 1

argument pointer this

...

3

R

...

Virtual memory segments just after the operation b.radius=17:

argument pointer this

Class Ball { ...

void SetR(int r) { radius = r; } }

...

Ball b;

b.SetR(17);

// Get b's base address:

push argument 0

// Point the this segment to b:

pop pointer 0 // Get r's value push argument 1

// Set b's third field to r:

pop this 2

Handling objects:

establishing access to the object’s fields need to know which

instance it is working on

need to pass the object into the function

=> Ball.SetR(b, 17)

0 0 1

Virtual memory segments just before the operation b.radius=17:

3012 17 0

1 ... ...

argument pointer this

this 0 is now aligned with RAM[3012]

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org, Chapter 1: Compiler II: Code Generation slide 22

class Complex {

// Fields (properties):

int re; // Real part int im; // Imaginary part ...

/** Constructs a new Complex number */

public Complex (int re, int im) { this.re = re;

this.im = im;

} ...

}

Java code

Handling objects:

construction / memory allocation

Java code

Handling objects:

construction / memory allocation

class Foo {

public void bla() { Complex a, b, c;

...

a = new Complex(5,17);

b = new Complex(12,192);

...

// Only the reference is copied c = a;

...

} Following

execution:

Java code

Handling objects:

construction / memory allocation

class Foo {

public void bla() { Complex a, b, c;

...

a = new Complex(5,17);

b = new Complex(12,192);

...

// Only the reference is copied c = a;

...

}

How to compile:

foo = new ClassName(…) The compiler generates code affecting:

foo = Memory.alloc(n) Where nis the number of words necessary to represent the object in question, and

Memory.allocis an OS method that returns the base address of a free memory block of size n words.

(7)

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org, Chapter 1: Compiler II: Code Generation slide 25

Handling objects:

accessing fields

How to compile:

im = im * c ?

1. look up the two variables in the symbol table

2. Generate the code:

This pseudo-code should be expressed in the target language.

class Complex {

// Fields (properties):

int re; // Real part int im; // Imaginary part ...

/** Constructs a new Complex number */

public Complex (int re, int im) { this.re = re;

this.im = im;

}

/** Multiplies this Complex number by the given scalar */

public void mult (int c) { re = re * c;

im = im * c;

} ...

}

Java code

*(this + 1) = *(this + 1) times

(argument 0) 

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org, Chapter 1: Compiler II: Code Generation slide 26

Handling objects:

method calls class Complex {

...

public void mult (int c) { re = re * c;

im = im * c;

} ...

}

class Foo { ...

public void bla() { Complex x;

...

x = new Complex(1,2);

x.mult(5);

...

} } Java code

push x push 5 call mult How to compile:

x.mult(5)  ?

This method call can also be viewed as:

mult(x,5)

Generate the following code:

Handling objects:

method calls

General rule: each method call foo.bar(v1,v2,...)

is translated into:

push foo push v1 push v2 ...

call bar class Complex {

...

public void mult (int c) { re = re * c;

im = im * c;

} ...

}

class Foo { ...

public void bla() { Complex x;

...

x = new Complex(1,2);

x.mult(5);

...

} } Java code

Handling array

int foo() { // some language, not Jack int bar[10];

...

bar[2] = 19;

}

(8)

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org, Chapter 1: Compiler II: Code Generation slide 29

Handling array

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org, Chapter 1: Compiler II: Code Generation slide 30

class Bla { ...

void foo(int k) { int x, y;

int[] bar; // declare an array // Construct the array:

bar = new int[10];

...

bar[k]=19;

} ...

Main.foo(2); // Call the foo method Java code

How to compile:

bar = new int(n) ? Generate code affecting:

bar = Memory.alloc(n)

Handling arrays:

declaration / construction

0 4315

4316 4317

4324

(bar array)

...

4318

...

...

4315

...

0

bar x y

2 k

(local 0) (local 1) (local 2)

(argument 0) 275

276 277

504

RAM state

...

Following compilation:

class Bla { ...

void foo(int k) { int x, y;

int[] bar; // declare an array // Construct the array:

bar = new int[10];

...

bar[k]=19;

} ...

Main.foo(2); // Call the foo method Java code

How to compile: bar[k] = 19 ?

Handling arrays:

accessing an array entry by its index

RAM state, just after executing bar[k] = 19

19 4315

4316 4317

4324

(bar array)

...

4318

...

...

4315

...

0

bar x y

2 k

(local 0) (local 1) (local 2)

(argument 0) 275

276 277

504

RAM state

...

Following compilation:

How to compile: bar[k] = 19 ?

// bar[k]=19,  // or *(bar+k)=19 push bar

push k add

// Use a pointer to // access x[k]

// addr points to bar[k]

pop addr push 19

// Set bar[k] to 19 pop *addr

VM Code (pseudo)

// bar[k]=19,  // or *(bar+k)=19 push local 2 push argument 0 add

// Use a pointer to // access x[k]

pop pointer 1 push constant 19

pop that 0 VM Code (actual)

Handling arrays:

accessing an array entry by its index

(9)

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org, Chapter 1: Compiler II: Code Generation slide 33

syntax analysis

parse tree

Handling expressions

((5+z)/-8)*(4^2) High-level code

push 5 push z add push 8 neg call div push 4 push 2 call power call mult code

generation

VM code

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org, Chapter 1: Compiler II: Code Generation slide 34

Handling expressions (Jack grammar)

’x’: x appears verbatim x: x is a language construct x?: x appears 0 or 1 times x*: x appears 0 or more times x|y: either x or y appears (x,y): x appears, then y.

term binary term

Handling expressions (Jack grammar)

’x’: x appears verbatim x: x is a language construct x?: x appears 0 or 1 times x*: x appears 0 or more times x|y: either x or y appears (x,y): x appears, then y.

term constant

variable function

unary op

Handling expressions

To generate VM code from a parse tree exp, use the following logic:

The codeWrite(exp) algorithm:

if exp is a constant n then output "push n"

if exp is a variable v then output "push v"

if exp is op(exp

1

) then codeWrite(exp

1

); 

output "op";

if exp is f (exp

1

, ..., exp

n

) then codeWrite(exp1); 

...  

codeWrite(expn); 

output "call f";

if exp is (exp

1

op exp

2

) then codeWrite(exp

1

); 

codeWrite(exp

2

); 

output "op";

(10)

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org, Chapter 1: Compiler II: Code Generation slide 37

The Jack grammar (Expression)

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org, Chapter 1: Compiler II: Code Generation slide 38

From parsing to code generation (simplified expression)

 EXP  TERM (OP TERM)*

 TERM  integer | variable

 OP  + | - | * | /

From parsing to code generation

 EXP  TERM (OP TERM)*

 TERM  integer | variable

 OP  + | - | * | /

EXP() : TERM();

while (next()==OP) OP();

TERM();

From parsing to code generation

 EXP  TERM (OP TERM)*

 TERM  integer | variable

 OP  + | - | * | /

EXP() : TERM();

while (next()==OP) OP();

TERM();

TERM():

switch (next()) case INT:

eat(INT);

case VAR:

eat(VAR);

(11)

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org, Chapter 1: Compiler II: Code Generation slide 41

From parsing to code generation

 EXP  TERM (OP TERM)*

 TERM  integer | variable

 OP  + | - | * | /

EXP() : TERM();

while (next()==OP) OP();

TERM();

OP():

switch (next()) case +: eat(ADD);

case -: eat(SUB);

case *: eat(MUL);

case /: eat(DIV);

TERM():

switch (next()) case INT:

eat(INT);

case VAR:

eat(VAR);

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org, Chapter 1: Compiler II: Code Generation slide 42

From parsing to code generation

 EXP  TERM (OP TERM)*

 TERM  integer | variable

 OP  + | - | * | /

EXP() : TERM();

while (next()==OP) OP();

TERM();

OP():

switch (next()) case +: eat(ADD);

case -: eat(SUB);

case *: eat(MUL);

case /: eat(DIV);

TERM():

switch (next()) case INT:

eat(INT);

case VAR:

eat(VAR);

From parsing to code generation

 EXP  TERM (OP TERM)*

 TERM  integer | variable

 OP  + | - | * | /

EXP() : TERM();

while (next()==OP) op=OP();

TERM();

write(op);

TERM():

switch (next())

case INT: write(‘push constant ’ +next());

eat(INT);

case VAR: write(‘push ’

+lookup(next()));

eat(VAR);

OP():

switch (next()) case +: eat(ADD);

return ‘add’;

case -: eat(SUB);

return ‘sub’;

case *: eat(MUL);

return ‘call Math.mul’;

case /: eat(DIV);

return ‘call Math.div’;

The Jack grammar (Expression)

(12)

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org, Chapter 1: Compiler II: Code Generation slide 45

The Jack grammar (statement)

STATEMENTS() :

while (next() in {let, if, while, do, return}) STATEMENT();

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org, Chapter 1: Compiler II: Code Generation slide 46

The Jack grammar (statement)

STATEMENT() : switch (next())

case LET: LET_STAT();

case IF: IF_STAT();

case WHILE: WHILE_STAT();

case DO: DO_STAT();

case RETURN: RETURN_STAT();

let statement

LET_STAT():

eat(LET);

eat(VAR);

eat(EQ);

EXP();

eat(SEMI);

Parsing

LET_STAT():

eat(LET);

variable=lookup(next());

eat(VAR);

eat(EQ);

EXP();

eat(SEMI);

write(‘pop ’ + variable)

Parsing with code generation

Handling program flow

if (cond) s1 else

s2 ...

High-level code

VM code to compute and push !(cond) if‐goto L1

VM code for executing s1 goto L2

label L1

VM code for executing s2 label L2

...

VM code

code generation

(13)

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org, Chapter 1: Compiler II: Code Generation slide 49

Handling program flow

while (cond) s

...

High-level code

label L1   

VM code to compute and push !(cond) if‐goto L2

VM code for executing s goto L1

label L2 ...

VM code

code generation

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org, Chapter 1: Compiler II: Code Generation slide 50

The Jack grammar (class)

CLASS() : eat(CLASS);

eat(ID);

eat(‘{‘);

while (next() in {static, field}) CLASSVARDEC();

while (next() in {constructor, function, method}) SUBROUTINEDEC();

eat(‘}’);

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org, Chapter 1: Compiler II: Code Generation slide 51

The Jack grammar (class)

CLASS() :

eat(CLASS); class=registerClass(next());

eat(ID);

eat(‘{‘);

while (next() in {static, field}) CLASSVARDEC(class);

while (next() in {constructor, function, method}) SUBROUTINEDEC(class);

eat(‘}’); Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org, Chapter 1: Compiler II: Code Generation slide 52

The Jack grammar (class)

CLASSVARDEC(class) : switch (next())

case static: eat(STATIC); kind=STATIC;

case field: eat(FIELD); kind=FIELD;

switch (next())

case int: type=INT;eat(INT);

case char: type=CHAR; eat(CHAR);

case boolean: type=BOOLEAN; eat(BOOLEAN);

case ID: type=lookup(next()); eat(ID);

registerClassVar(class, next(), kind, type);

eat(ID);

while (next()=COMMA)

registerClassVar(class, next(), kind, type);

eat(ID);

(14)

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org, Chapter 1: Compiler II: Code Generation slide 53

Put them together

class BankAccount { static int nAccounts;

static int bankCommission;

field int id;

field String owner;

field int balance;

method void transfer(int sum, BankAccount from, Date when){

var int i, j;

var Date due;

let balance = (balance + sum) – commission(sum * 5);

// More code ...

}

...

let balance = (balance + sum) – commission(sum * 5)

Perspective

Jack simplifications that are challenging to extend:

Limited primitive type system

No inheritance

No public class fields, e.g. must use r = c.getRadius() rather than r = c.radius Jack simplifications that are easy to extend: :

Limited control structures, e.g. no for, switch, …

Cumbersome handling of char types, e.g. cannot use let x=‘c’

Optimization

For example, c=c+1 is translated inefficiently into push c, push 1, add, pop c.

Parallel processing

Many other examples of possible improvements …

參考文獻

相關文件

Elements of Computing Systems, Nisan &amp; Schocken, MIT Press, www.nand2tetris.org , Chapter 4: Machine Language slide

Elements of Computing Systems, Nisan &amp; Schocken, MIT Press, www.nand2tetris.org , Chapter 12: Operating System slide 1..

Elements of Computing Systems, Nisan &amp; Schocken, MIT Press, www.nand2tetris.org , Chapter 12: Operating System slide 2.. Where we

method void setCharAt(int j, char c) method String appendChar(char c) method void eraseLastChar() method int intValue() method void setInt(int j) function char

Elements of Computing Systems, Nisan &amp; Schocken, MIT Press, www.nand2tetris.org , Chapter 7: Virutal Machine, Part I slide

Elements of Computing Systems, Nisan &amp; Schocken, MIT Press, www.nand2tetris.org , Chapter 9: High-Level Language slide

Elements of Computing Systems, Nisan &amp; Schocken, MIT Press, www.nand2tetris.org , Chapter 9: High-Level Language slide 2.. Where we

Elements of Computing Systems, Nisan &amp; Schocken, MIT Press, www.nand2tetris.org , Chapter 7: Virutal Machine, Part I slide