• 沒有找到結果。

Correlations of single nucleotide polymorphisms in GRM3 and DTNBP1 genes among Taiwanese schizophrenia / 黃清德 撰 .- 彰 黃清德、蔡明勳

N/A
N/A
Protected

Academic year: 2022

Share "Correlations of single nucleotide polymorphisms in GRM3 and DTNBP1 genes among Taiwanese schizophrenia / 黃清德 撰 .- 彰 黃清德、蔡明勳"

Copied!
3
0
0

加載中.... (立即查看全文)

全文

(1)

Correlations of single nucleotide polymorphisms in GRM3 and DTNBP1 genes among Taiwanese schizophrenia / 黃清德 撰 .- 彰

黃清德、蔡明勳

E-mail: 354804@mail.dyu.edu.tw

ABSTRACT

Schizophrenia is one of the most serious mental illnesses. Recent studies have shown that 64~81% of schizophrenic patients with genetic heredity, and indicated that glutamate neurotransmission is pathway associated with schizophrenia. We chose GRM3 and DTNBP1 genes to analyze the corelations of genetic polymorphisms and schizophrenia. GRM3 gene product is one of the synaptic G-protein receptors of the neurotransmitter, glutamate. DTNBP1 is responsible for encoding dysbindin protein. Dysbindin is linked to brain’s commands and is one of the key proteins in both glutamate and dopamine nerve transmissions. This study included three experimental groups: the drug control well (type I), ineffective drug control (type II) of schizophrenial patients and normal persons without any known mental illness inheritance for three generations. We analyzed six single nucleotide polymorphisms (SNPs) of GRM3 and DTNBP1 genes including rs2299225, rs1468412, rs7758659, rs760666, rs875462 and rs3213207. Primers were designed for polymerase chain reaction (PCR) amplifications of sequences around SNPs, respectively. We try to know first if there are

insertions or deletions around these SNPs. Each PCR product was then sequenced and result was analyzed to understand whether there are polymorphisms. The correlations of schizophrenia and mutations were statistically analyzed. According to results of statistic analyses, there are no significant difference between type I and type II patients in the age of schizophrenial morbidity and sex. We found that the age of type I patients is between 21 to 30 years old and type II is between 21 to 30 years old. The age of onset of schizophrenia is about 15 to 45 years old. Results of individual allele frequency associations show that rs1468412 of GRM3 gene (p=0.004) and rs3213207 of DTNBP1 gene (p=0.043) is significantly associated with schizophrenia. The other four SNPs are not related with schizophrenia. Results also showed that there is a sex difference between type I and type II patients in rs1468412.

Furthermore we found that there is a nucleotide difference close to rs875462 of DTNBP1 gene associated with schizophrenia. These results show that the gene polymorphisms of GRM3 and DTNBP1 are associated with schizophrenia in Taiwan. Variations of SNPs in rs1468412 and rs3213207 may be factors causing schizophrenia in Taiwan.

Keywords : Schizophrenia、GRM3 gene、DTNBP1 gene、Single nucleotide polymorphisms Table of Contents

目錄 封面內頁 簽名頁 中文摘要 iii 英文摘要 v 誌謝 vii 目錄 viii 圖目錄 xi 表目錄 xii 1. 緒論 1 1.1 研究背景 1 1.2 研究動機 2 1.3 研究目的 3 2. 文獻回顧 4 2.1 精神分裂症介紹 4 2.2 精神分裂症分類 4 2.3 精神分裂症治療 5 2.4 精神分裂症可能致病因 素 6 2.5 基因突變與精神分裂症之關聯性 7 2.6 多巴胺傳導路徑之功能以及受器介紹 11 2.7 麩胺酸傳導路徑之功能及其受器 介紹 12 2.8 GRM3和DTNBP1基因與精神分裂症之關聯 14 2.9 如何選定GRM3與DTNBP1基因之SNPS進行精神分裂 症關聯 性分析 16 3. 材料與方法 17 3.1 實驗材料與設備 17 3.2 實驗流程 18 3.3 樣本來源 19 3.4 採血與血球分離並萃取純化染色 體DNA 21 3.5 以分光光度計分析DNA濃度再以膠體電泳分析DNA 品質 22 3.6 聚合?鏈鎖反應擴增特定的DNA片段 23 3.7 目標DNA片段大小確認與序列分析 24 3.8 統計分析 25 4. 結果與討論 26 4.1 精神分裂症病患與正常人發病年齡統計 26 4.2 精神分裂症病患之發病年齡比較分析 27 4.3 GRM3基因之對偶基因頻率統計結果 29 4.3.1 GRM3基因之SNP-rs1468412的統 計結果 29 4.3.2 GRM3基因之SNP-rs2299225的統計結果 34 4.4 DTNBP1基因之對偶基因頻率統計結果 39 4.4.1 DTNBP1基 因之SNP-rs7758659的統計結果 39 4.4.2 DTNBP1基因之SNP-rs760666的統計結果 40 4.4.3 DTNBP1基因之SNP-rs875462的 統計結果 42 4.4.4 DTNBP1基因之SNP-rs3213207的統計結果 43 4.5 SNPS實驗結果與NCBI提供序列比較 48 4.6 SNPS鄰近位 置可能和精神分裂症相關的突變 49 4.7 討論 54 5. 結論 59 參考文獻 60 附錄 68 圖目錄 圖1. 三種麩胺酸受器種類及其訊息傳 遞 14 圖2. 實驗流程圖 18 圖3. GRM3基因之rs1468412的膠體電泳圖 30 圖4. GRM3基因之rs1468412的序列統計結果 30 圖5.

GRM3基因之rs1468412的序列之男、女分別比例結果 32 圖6. GRM3基因之rs2299225的膠體電泳圖 35 圖7. GRM3基因 之rs2299225的序列統計結果 35 圖8. GRM3基因之rs2299225的序列之男、女分別比例結果 37 圖9. DTNBP1基因

之rs7758659的膠體電泳圖 39 圖10. DTNBP1基因之rs7758659的序列統計結果 40 圖11. DTNBP1基因之rs760666的膠體電泳 圖 41 圖12. DTNBP1基因之rs760666的序列統計結果 41 圖13. DTNBP1基因之rs875462的膠體電泳圖 42 圖14. DTNBP1基因 之rs875462的序列統計結果 43 圖15. DTNBP1基因之rs3213207的膠體電泳圖 44 圖16. DTNBP1基因之rs3213207的序列統計 結果 45 圖17. DTNBP1基因之rs3213207的序列之男、女分別比例結果 46 圖18. DTNBP1基因之g.15478430的序列統計結果 50 圖19. DTNBP1基因之g.15478685的序列統計結果 51 圖20. DTNBP1基因之g.15478430的序列之男、女分別比例結果 52

(2)

表目錄 表1. 樣本類型和性別、平均年齡統計表 20 表2. 有抽取到DNA的樣本類型和性別統計 21 表3. 精神分裂症病患發病 年齡分層表 27 表4. 第一型與第二型精神分裂症病患發病年齡比較 28 表5. 第一型與第二型精神分裂症男性與女性病患發病 年齡比較 28 表6. 精神分裂症與rs1468412的關聯性分析 31 表7. 精神分裂症與rs1468412的對偶基因頻率在性別上的關聯 性 分析 33 表8. 精神分裂症與rs2299225的關聯性分析 36 表9. 精神分裂症與rs2299225的對偶基因頻率在性別上的關聯 性分析 38 表10. 精神分裂症與rs3213207的關聯性分析 45 表11. 精神分裂症與rs3213207的對偶基因頻率在性別上的關聯 性分析 47 表12. SNPs序列實驗結果與NCBI資料庫比較表 48 表13. 精神分裂症與g.15478430的關聯性分析 50 表14. 精神分裂症 與g.15478685的關聯性分析 51 表15. 精神分裂症與g.15478430的對偶基因頻率在性別上的關 聯性分析 53

REFERENCES

1.孔繁鐘。1997。DSM-IV 精神疾病的診斷與統計。合計圖書出版社。台北,台灣。 2.吳銘斌,林秀娟,黃國峰。2001。遺傳與人類疾 病。台灣醫學5(5):569-576。 3.李懿瑋。2008。精神分裂症病患與正常人之DNA甲基化網絡的差異。國立中央大學生物資訊與系統生 物研究所碩士論文。 4.周葦,萬紅嬌,楊翠萍。2010。精神分裂症相關基因的研究進展。實用臨床醫學11(4):128-130。 5.洪采瑋

。2005。訊息傳遞路徑DARPP-32/PP-1在精神分裂症患者之分子遺傳研究。慈濟大學人類遺傳研究所碩士論文。 6.孫偉,?俊,王力芳

,曲梅,阮燕燕,盧天蘭,岳偉華,張岱。2009。精神分裂症斷裂基因1(DISIC1)多態性與精神分裂症的關聯研究。中國心理衛生雜 誌23(8):590-594。 7.徐巧玲。2008。NMDAR2A和NEFL作為精神分裂症之易感性基因研究。慈濟大學人類遺傳研究所碩士論文。 8.

徐霈君。2009。以蛋白質交互作用的觀念解釋精神分裂症NRG1-CACNG2 基因交互作用的機制。國立陽明大學生命科學院生物醫學資 訊研究所碩士論文。 9.張翔,盧楠,顏懷城,謝馨,肖嵐。2011。精神分裂症斷裂基因1在精神分裂症發病機制中的研究進展。中國葯 業20(3):77-78。 10.陸雪芬。2008。精神分裂症病患與家庭成員面臨疾病遺傳不確 定情境之生活經驗探討。國立陽明大學臨床護理研 究所碩士論文。 11.湯華盛 編著。2007。精神疾病與自殺防治。第2-4頁。行政院衛生署自殺防治中心出版。台北,台灣。 12.白雅美醫 師(民88年11月7日)。精神分裂病(3)【心靈園地】取自 http://www.psychpark.org/paper1/article/?keyword=%A5% D5%B6%AE%AC%FC 13.維基百科,自由的百科全書(民100年12月27日)。精神分裂症【維基百科】取自 http://zh.wikipedia.org/wiki/%E7%B2%BE

%E7%A5%9E%E5%88%86%E8%A3%82%E7%97%87 14.NCBI資料庫。 http://www.ncbi.nlm.nih.gov/snp 15.Austin, J. 2005.

Schizophrenia: an update and review. Journal of Genetic Counseling. 14(5): 329-340. 16.Albalushi, T., Horiuchi, Y., Ishiguro, H., Koga, M., Inada, T., Iwata, N., Ozaki, N., Ujike, H., Watanabe, Y., Someya, T. and Arinami, T. 2008. Replication Study and Meta-Analysis of the Genetic Association of GRM3 Gene Polymorphisms With Schizophrenia in a Large Japanese Case-Control Population. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics. 147B(3): 392-396. 17.Andreoua, D., Saetre, P., Kahler, A. K., Wergee, T., Andreassen, O. A., Agartz, I., Sedvall, G. C., Hall, H., Terenius, L. and Jonsson, E. G. 2011. Dystrobrevin-binding protein 1 gene (DTNBP1) variants associated with cerebrospinal fluid homovanillic acid and 5-hydroxyindoleacetic acid concentrations in healthy volunteers. European Neuropsychopharmacology.

21(9): 700-704. 18.Bedard, P., Boucher, R., Daigle, M.M., Di Paolo, T., 1984. Similar effect of estradiol and haloperidol on experimental tardivedyskinesia in monkeys. Psychoneuroendocrinology. 9(4): 375–379. 19.Baune, B. T., Suslow, T., Be’ste, C., Birosova, E., Domschke, K., Sehlmeyer, C. and Konrad, C. 2010. Association between genetic variants of the metabotropic glutamate receptor 3 (GRM3) and cognitive set shifting in healthy individuals. Genes, Brain and Behavior. 9(5): 459–466. 20.Bassett, A. S., Chow, E. W., Waterworth, D. M. and Brzustowicz, L.

2001. Genetic Insights into Schizophrenia. Canadian Journal of Psychiatry. 46(2): 131-7. 21.Bassett, A. S., Marshall, C. R. and Lionel, A. C. 2008.

Copy number variations and risk for schizophrenia in 22q11.2 deletion syndrome. Human Molecular Genetics. 17(24): 4045-4053. 22.Benson, M.

A., Newey, S. E., Martin-Rendon, E., Hawkes, R. and Blake, D. J. 2001. Dysbindin a novel coiled-coil-containing protein that interacts with the dystrobrevins in muscle and brain. Biological Chemistry. 276: 24232-24241. 23.Bishop, J. R., Miller, D. D., Ellingrod, V. L. and Holman, T. 2011.

Association between type-three metabotropic glutamate receptor gene (GRM3) variants and symptom presentation in treatment refractory schizophrenia. Human Psychopharmacology: Clinical and Experimental. 26(1): 28–34. 24.Chen, Q., He, G., Chen, Q., Wu, S., Xu, Y., Feng, G., Li, Y., Wang, L. and He, L. 2005. A case-control study of the relationship between the metabotropic glutamate receptor 3 gene and schizophrenia in the Chinese population. Schizophrenia Research. 73(1): 21–26. 25.Chien, Y. L., Liu, C. M., Fann, C. S. J., Liu, Y. L. and Hwu, H. G. 2009.

Association of the 3 Region of COMT with Schizophrenia in Taiwan. Journal of the Formosan Medical Association. 108(4): 301-309. 26.Cherlyn, S. Y. T., Woon, P. S., Liu, J. J., Ong, W. Y., Tsai, G. C. and Sim, K. 2010. Genetic association studies of glutamate, GABA and related genes in schizophrenia and bipolar disorder: A decade of advance. Neuroscience and Biobehavioral Reviews. 34(6): 958–977. 27.Dumontheil, I., Roggeman, C., Ziermans, T., Peyrard-Janvid, M., Matsson, H., Kere, J. and Klingberg, T. 2011. Influence of the COMT Genotype on Working Memory and Brain Activity Changes During Development. Biological Psychiatry. 70(3): 222-229. 28.Duan, J., Martinez, M., Sanders, A. R., Hou, C., Burrell, G. J., Krasner, A. J., Schwartz, D. B. and Gejman, P. V. 2007. DTNBP1 (Dystrobrevin Binding Protein 1) and Schizophrenia:

Association Evidence in the 3’ End of the Gene. Human Heredity. 64(2): 97-106. 29.Domschke, K., Lawford, B., Young, R., Voisey, J., Morris, C. P., Roehrs, T., Hohoff, C., Birosova, E., Arolt, V. and Baune, B. T. 2011. Dysbindin (DTNBP1) - A role in psychotic depression? Journal of Psychiatric Research. 45(5): 588-595. 30.Fujii, Y., Shibata, H., Kikuta, R., Makino, C., Tani, A., Hirata, N., Shibata, A., Ninomiya, H., Tashiro, N. and Fukumaki, Y. 2003. Positive association of polymorphisms in the metabotropic glutamate receptor type 3 gene (GRM3) with schizophrenia.

Psychiatric Genetics. 13(2): 71-76. 31.Giegling, I., Genius, J., Benninghoff, J. and Rujescu, D. 2010. Genetic findings in schizophrenia patients related to alterations in the intracellular Ca-homeostasis. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 34(8): 1375–1380.

(3)

32.Hwu, H. G., Hong, C. J., Lee, Y. L., Lee, P. C. and Lee, S. F. C. 1998. Dopamine D4 Receptor Gene Polymorphisms and Neuroleptic Response in Schizophrenia. Biological Psychiatry. 44(6): 483-487. 33.Haukvik, U. K., Saetre, P., McNeil, T., Bjerkan, P. S., Andreassen, O. A., Werge, T., Jonsson, E. G. and Agartz, I. 2010. An exploratory model for G×E interaction on hippocampal volume in schizophrenia; obstetric complications and hypoxia-related genes. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 34(7): 1259–1265. 34.Jablensky, A., Morar, B., Wiltshire, S., Carter, K., Dragovic, M., Badcock, J. C., Chandler, D., Peters, K. and Kalaydjieva, L. 2011. Polymorphisms associated with normal memory variation also affect memory impairment in schizophrenia. Genes, Brain and Behavior. 10(4): 410-417. 35.Kirov, G., O

’Donovan, M. C. and Qwen, M. J. 2005. Finding schizophrenia genes. Journal of Clinical Investigation. 115(6): 1440-1448. 36.Karayiorgou, M.

and Gogos, J. A. 2006. Schizophrenia genetics: uncovering positional candidate genes. European Journal of Human Genetics. 14: 512-519.

37.Kulkarni, J., De Castella, A. R., Headey, B., Marston, N., Sinclair, K., Lee, S., Gurvich, C., Fitzgerald, P. B., Burger, B. 2011. Estrogens and men with schizophrenia: Is there a case for adjunctive therapy? Schizophrenia Research. 125(2-3): 278–283. 38.Lang, U. E., Puls, I., Muller, D. J., Strutz-Seebohm, N. and Gallinat, J. 2007. Molecular mechanisms of Schizophrenia. Cellular Physiology and Biochemistry. 20(6): 687-702. 39.Liao, S. Y., Lin, S. H., Liu, C. M., Hsieh, M. H., Hwang, T. J., Liu, S. K., Guo, S. C., Hwu, H. G. and Chen, W. J. 2009. Genetic variants in COMT and neurocognitive impairment in families of patients with schizophrenia. Genes, Brain and Behavior. 8(2): 228-237. 40.Liu, C. M., Liu, Y. L., Fann, C. S. J., Yang, W. C., Wu, J. Y., Hung, S. I., Chen, W. J., Chueh, C. M., Liu, W. M., Liu, C. C., Hsieh, M. H., Hwang, T. J., Faraone, S.

V., Tsuang, M. T. and Hwu, H. G. 2007. No association evidence between schizophrenia and dystrobrevin-binding proten 1 (DTNBP1) in Taiwanese families. Schizophrenia Research. 93(1-3): 391-398. 41.Liu, Y. L., Fann, C. S. J., Liu, C. M., Chang, C. C., Yang, W. C., Hung, S. I., Yu, S. L., Hwang, T. J., Hsieh, M. H., Liu, C. C., Tsuang, M. M., Wu, J. Y., Jou, Y. S., Faraone, S. V., Tsuang, M. T., Chen, W. J. and Hwu, H.

G. 2007. More evidence supports the association of PPP3CC with Schizophrenia. Molecular Psychiatry. 12: 966-974. 42.Liu, C. M., Liu, Y. L., Fann, C. S. J., Chen, W. J., Yang, W. C., Ouyang, W. C., Chen, C. Y., Jou, Y. S., Hsieh, M. H., Liu, S. K., Hwang, T. J., Faraone, S. V., Tsuang, M. T. and Hwu, H. G. 2006. Association evidence of schizophrenia with distal genomic region of NOTCH4 in Taiwanese families. Genes, Brain and Behavior. 6(6): 497-502. 43.Mueser, K. T. and McGurk, S. R. 2004. Schizophrenia. The Lancet. 363(9426): 2063-2072. 44.Mossner, R., Schuhmacher, A., Schulze-Rauschenbach, S., Kuhn, K. U., Rujescu, D., Rietschel, M., Zobel, A., Franke, P., Wolwer, W., Gaebel, W., Hafner, H., Wagner, M. and Maier, W. 2008. Further evidence for a functional role of the glutamate receptor gene GRM3 in schizophrenia. European Neuropsychopharmacology. 18(10): 768–772. 45.Norton, N., Williams, H. J., Dwyer, S., Ivanov, D., Preece, A. C., Gerrish, A., Williams, N. M., Yerassimou, P., Zammit, S., O’Donovan, M. C. and Owen, M. J. 2005. No evidence for association between polymorphisms in GRM3 and schizophrenia. BMC Psychiatry. 5: 23. 46.Pae, C. U., Mandelli, L., Ronchi, D. D., Kim, J. J., Jun, T. Y., Patkar, A. A. and Serretti, A. 2009.

Dysbindin gene (DTNBP1) and schizophrenia in Korean population. European Archives of Psychiatry and Clinical Neuroscience. 259(3): 137-142.

47.Patil, S. T., Zhang, L., Martenyi, F., Lowe, S. L., Jackson, K. A., Andreev, B. V., Avedisova, A. S., Bardenstein, L. M., Gurovich, I. Y., Morozova, M. A., Mosolov, S. N., Neznanov, N. G., Reznik, A. M., Smulevich, A. B., Tochilov, V. A., Johnson, B. G., Monn, J. A. and Schoepp, D.D. 2007. Activation of mGlu2/3 receptors as a new approach to treat schizophrenia: a randomized Phase 2 clinical trial. Nature Medicine. 13:

1102-1107. 48.Park, H. J., Levitt, J., Shenton, M. E., Salisbury, D. F., Kubicki, M., Kikinis, R., Jolesz, F. A. and McCarley, R. W. 2004. An MRI study of spatial probability brain map differences between first-episode schizophrenia and normal controls. Neurolmage. 22(3): 1231-1246.

49.Petronis, A., Paterson, A. D. and Kennedy, J. L. 1999. Schizophrenia: An Epigenetic Puzzle? Schizophrenia Bulletin. 25(4): 639–655.

50.Rapoport, J. L., Addington, A. M., Frangou, S. and Psych, M. R. 2005. The neurodevelopmental model of schizophrenia: update 2005.

Molecular Psychiatry. 10: 434-449. 51.Sumner, B.E., Fink, G., 1998. Testosterone as well as estrogen increases serotonin 2A receptor mRNA and binding site densities in the male rat brain. Molecular Brain Research. 59(2): 205-214. 52.Saiz, P. A., Garcia-Portilla, M. P., Arango, C., Morales, B., Arias, B., Corcoran, P., Fernandez, J. M., Alvarez, V., Coto, E., Bascaran, M. T., Bousono, M., Fananas, L. and Bobes, J. 2010. Genetic polymorphisms in the dopamine-2 receptor (DRD2), dopamine-3 receptor (DRD3), and dopamine transporter (SLC6A3) genes in schizophrenia:

Data from an association study. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 34(1): 26–31. 53.Seeman, P. and Kapur, S.

2000. Schizophrenia: more dopamine, more D2 receptors. Proceedings of the National Academy of Sciences. 97(14): 7673-7675. 54.Schoepp, D.

D. 1994. Novel functions for subtypes of metabotropic glutamate receptors. Neurochemistry International. 24(5): 439-449. 55.Thimml, M., Krug, A., Kellermann, T., Markov, V., Krach, S., Jansen, A., Zerres, K., Eggermann, T., Stocker, T., Shah, N. J., Nothen, M. M., Rietschel, M. and Kircher, T. 2010. The effects of a DTNBP1 gene variant on attention networks: an fMRI study. Behavioral and Brain Functions. 6: 54. 56.Voisey, J., Swagell, C. D., Hughes, I. P., Lawford, B. R., Young, R. M. and Morris, C. P. 2010. Analysis of HapMap tag-SNPs in dysbindin (DTNBP1) reveals evidence of consistent association with schizophrenia. European Psychiatry. 25(6): 314–319. 57.Voisey, J., Swagell, C. D., Hughes, I. P., Connor, J. P., Lawford, B. R., Young, R. M. and Morris, C. P. 2010. A polymorphism in the dysbindin gene (DTNBP1) associated with multiple psychiatric disorders including schizophrenia. Behavioral and Brain Functions. 6(1): 41. 58.Voglis, G. and Tavernarakis, N. 2006. The role of synaptic ion channels in synaptic plasticity. EMBO Reports. 13(7): 1104-1110. 59.Weickert, C. S., Straub, R. E., McClintock, B. W., Hashimoto, R. and Hyde, T. M. 2004. Human dysbindin(DTNBP1)gene expression in normal brain and in schizophrenic prefrontal cortex and midbrain.

Archives of General Psychiatry. 61(6): 544-555. 60.Zhang, J. P., Burdick, K. E., Lencz, T. and Malhotra, A. K. 2010. Meta-Analysis of Genetic Variation in DTNBP1 and General Cognitive Ability. Biological Psychiatry. 68(12): 1126–1133.

參考文獻

相關文件

(2) In each side of the mandible, the impacted teeth (the second and third molars) had their occlusal surfaces contac ng each other in a single follicular space.. Treatment

Genetic study of the BRAF gene reveals new variants and high frequency of the V600E mutation among Iranian ameloblastoma patients.. Maryam Soltani 1 | Mohammad Amin Tabatabaiefar 2,3

194,195 In cases of medication- induced salivary gland hypofunction, the unstimulated whole saliva flow rate is usually significantly reduced, whereas the chewing- stimulated

• Since successive samples are correlated, the Markov chain may have to be run for a considerable time in order to generate samples that are effectively independent samples from p(x).

• Can be applied to all the latent variable models including factor analysis, probabilistic PCA, mixture of factor analyzers, mixture of probabilistic PCA, mixture of Gaussians, etc..

- Multi-layer perceptron with linear, logistic and softmax outputs and appropriate error functions. - Radial basis function (RBF) networks with both Gaussian and non-local

We solve the three-in-a-tree problem on

• However, these studies did not capture the full scope of human expansion, which may be due to the models not allowing for a recent acceleration in growth