• 沒有找到結果。

# Operating Systems

N/A
N/A
Protected

Share "Operating Systems"

Copied!
60
0
0

(1)

(2)

### Where we are at:

Assembler Chapter 6

### Operating Sys.

abstract interface

Chapters 10 - 11

Chapters 7 - 8

Chapters 4 - 5

Chapters 1 - 3

### Machine

abstract interface

### AssemblyLanguage

abstract interface

### MachineLanguage

abstract interface

### HardwarePlatform

abstract interface

### Logic Gates

abstract interface

Chapters 9, 12

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

###  Author of “The Art of Computer Programming”

《美國科學家》（American Scientist）雜誌曾將該書與愛因斯坦 的《相對論》、狄拉克的《量子力學》、理查·費曼的《量子電 動力學》等書並列為20世紀最重要的12本物理科學類專論書之 一。

(15)

## 

class Math { class String {

class Array { class Output {

class Screen { class Memory {

class Keyboard { class Sys {

function (…)

}

(16)

### method void setInt(int j)function char backSpace()function char doubleQuote()function char newLine()

class Math { class String {

class Array { class Output {

class Screen { class Memory {

class Keyboard { class Sys {

function (…)

}

(17)

(18)

(19)

### function void deAlloc(Array o)}

class Math { class String {

class Array { class Output {

class Screen { class Memory {

class Keyboard { class Sys {

function (…)

}

(20)

(21)

(22)

(23)

### }

class Math { class String {

class Array { class Output {

class Screen { class Memory {

class Keyboard { class Sys {

function (…)

}

(24)

(25)

(26)

(0,0)

(27)

(28)

fast

(29)

(30)

(31)

1.

2.

3.

(32)

(33)

(34)

(35)

(36)

### function void println()function void backSpace()}

class Math { class String {

class Array { class Output {

class Screen { class Memory {

class Keyboard { class Sys {

function (…)

}

(37)

###  In addition, we have to manage a “cursor”.

(38)

class Output {

static Array charMaps;

function void initMap() {

let charMaps = Array.new(127);

// Assign a bitmap for each character

do Output.create(32,0,0,0,0,0,0,0,0,0,0,0); // space do Output.create(33,12,30,30,30,12,12,0,12,12,0,0); // ! do Output.create(34,54,54,20,0,0,0,0,0,0,0,0); // “ do Output.create(35,0,18,18,63,18,18,63,18,18,0,0); // # ...

do Output.create(48,12,30,51,51,51,51,51,30,12,0,0); // 0 do Output.create(49,12,14,15,12,12,12,12,12,63,0,0); // 1 do Output.create(50,30,51,48,24,12,6,3,51,63,0,0); // 2 . . .

do Output.create(65,0,0,0,0,0,0,0,0,0,0,0); // A ** TO BE FILLED **

do Output.create(66,31,51,51,51,31,51,51,51,31,0,0); // B do Output.create(67,28,54,35,3,3,3,35,54,28,0,0); // C . . .

return;

}

### Font implementation ( in the Jack OS )

// Creates a character map array

function void create(int index, int a, int b, int c, int d, int e, int f, int g, int h, int i, int j, int k) { var Array map;

let map = Array.new(11);

let charMaps[index] = map;

let map[0] = a;

let map[1] = b;

let map[2] = c;

...

let map[10] = k;

return; }

(39)

### function char keyPressed()function char readChar()

class Math { class String {

class Array { class Output {

class Screen { class Memory {

class Keyboard { class Sys {

function (…)

}

(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)

(51)

(52)

(53)

(54)

(55)

(56)

(57)

(58)

(59)

(60)

###  Very large scale storage

Numerical experiments are done for a class of quasi-convex optimization problems where the function f (x) is a composition of a quadratic convex function from IR n to IR and

strongly monotone or uniform P -function to obtain property of bounded level sets, see Proposition 3.5 of Chen and Pan (2006).. In this section, we establish that if F is either

Abstract Like the matrix-valued functions used in solutions methods for semidefinite pro- gram (SDP) and semidefinite complementarity problem (SDCP), the vector-valued func-

By this, the second-order cone complementarity problem (SOCCP) in H can be converted into an unconstrained smooth minimization problem involving this class of merit functions,

Lin, A smoothing Newton method based on the generalized Fischer-Burmeister function for MCPs, Nonlinear Analysis: Theory, Methods and Applications, 72(2010), 3739-3758..

Specifically, in Section 3, we present a smoothing function of the generalized FB function, and studied some of its favorable properties, including the Jacobian consistency property;

Speciﬁcally, in Section 3, we present a smoothing function of the generalized FB function, and studied some of its favorable properties, including the Jacobian consis- tency

int main(int argc, char** argv).