2008 W -C L Calculus(I)

37  Download (0)

Full text

(1)

Calculus (I)

WEN-CHING LIEN

Department of Mathematics National Cheng Kung University

2008

WEN-CHINGLIEN Calculus (I)

(2)

5.3 The Fundamental Theorem of Calculus.

Theorem (I)

If f is continuous on[a,b],then the function F defined by

F(x) = Z x

a

f(u)du, axb

is continuous on [a,b]and differentiable on(a,b),and d

dxF(x) =f(x)

WEN-CHINGLIEN Calculus (I)

(3)

pf of Theorem I:

d

dx F ( x ) = lim

h0

1 h

R

x+h

x

f ( u ) du

For u ∈ [ x , x + h] , mf (u ) ≤ M

m ≤ 1 h

R

x+h

x

f (u)du ≤ M

WEN-CHINGLIEN Calculus (I)

(4)

pf of Theorem I:

d

dx F ( x ) = lim

h0

1 h

R

x+h

x

f ( u ) du

For u ∈ [ x , x + h] , mf (u ) ≤ M

m ≤ 1 h

R

x+h

x

f (u)du ≤ M

WEN-CHINGLIEN Calculus (I)

(5)

pf of Theorem I:

d

dx F ( x ) = lim

h0

1 h

R

x+h

x

f ( u ) du

For u ∈ [ x , x + h] , mf (u ) ≤ M

m ≤ 1 h

R

x+h

x

f (u)du ≤ M

WEN-CHINGLIEN Calculus (I)

(6)

⇒ I.V.T. ∃Ch∈ [x,x+h]

such that f(Ch) = Ih, lim

h0Ch=x

∵f is continuous, lim

h0f(Ch) =f(x)

d

dxF(x) =f(x). 2

WEN-CHINGLIEN Calculus (I)

(7)

⇒ I.V.T. ∃Ch∈ [x,x+h]

such that f(Ch) = Ih, lim

h0Ch=x

∵f is continuous, lim

h0f(Ch) =f(x)

d

dxF(x) =f(x). 2

WEN-CHINGLIEN Calculus (I)

(8)

⇒ I.V.T. ∃Ch∈ [x,x+h]

such that f(Ch) = Ih, lim

h0Ch=x

∵f is continuous, lim

h0f(Ch) =f(x)

d

dxF(x) =f(x). 2

WEN-CHINGLIEN Calculus (I)

(9)

Remark:

(1)F(x) =Rx

a f(u)du

F(x) =f(x)

F(x)is an anti-derivative of f(x)

We call R

f(x)dx an indefinite integral.

WEN-CHINGLIEN Calculus (I)

(10)

Remark:

(1)F(x) =Rx

a f(u)du

F(x) =f(x)

F(x)is an anti-derivative of f(x)

We call R

f(x)dx an indefinite integral.

WEN-CHINGLIEN Calculus (I)

(11)

Remark:

(1)F(x) =Rx

a f(u)du

F(x) =f(x)

F(x)is an anti-derivative of f(x)

We call R

f(x)dx an indefinite integral.

WEN-CHINGLIEN Calculus (I)

(12)

Remark:

(1)F(x) =Rx

a f(u)du

F(x) =f(x)

F(x)is an anti-derivative of f(x)

We call R

f(x)dx an indefinite integral.

WEN-CHINGLIEN Calculus (I)

(13)

Exercises:

1

R ( sinx + x

3

) dx

2

R 1

x dx

WEN-CHINGLIEN Calculus (I)

(14)

Exercises:

1

R ( sinx + x

3

) dx

2

R 1

x dx

WEN-CHINGLIEN Calculus (I)

(15)

Theorem (Leibnizs Rule) d

dx Z h(x)

g(x)

f(u)du =f(h(x))h(x) −f(g(x))g(x) Here f is continuous ,g and h are differentiable

WEN-CHINGLIEN Calculus (I)

(16)

Exercises:

1 d

dx Rx

0(eu2u)du

2 d

dx Rsinx

0 (x22x)dx

3 d

dx Rx3

x2 udu

WEN-CHINGLIEN Calculus (I)

(17)

Exercises:

1 d

dx Rx

0(eu2u)du

2 d

dx Rsinx

0 (x22x)dx

3 d

dx Rx3

x2 udu

WEN-CHINGLIEN Calculus (I)

(18)

Exercises:

1 d

dx Rx

0(eu2u)du

2 d

dx Rsinx

0 (x22x)dx

3 d

dx Rx3

x2 udu

WEN-CHINGLIEN Calculus (I)

(19)

Theorem (II)

Assume that f is continuous on [a,b],them Z b

a

f(x)dx =F(b) −F(a), where F(x)is an anti-derivative of f(x)

WEN-CHINGLIEN Calculus (I)

(20)

pf of Theorem II:

G(x ) ≡ R

x

a

f (u)du

G(x) = F (x ) + C

G(a) = 0, G(a) = F (a) + C

WEN-CHINGLIEN Calculus (I)

(21)

pf of Theorem II:

G(x ) ≡ R

x

a

f (u)du

G(x) = F (x ) + C

G(a) = 0, G(a) = F (a) + C

WEN-CHINGLIEN Calculus (I)

(22)

pf of Theorem II:

G(x ) ≡ R

x

a

f (u)du

G(x) = F (x ) + C

G(a) = 0, G(a) = F (a) + C

WEN-CHINGLIEN Calculus (I)

(23)

C= −F(a)

G(x) = F(x) −F(a)

⇒ Rx

a f(u)du =F(x) −F(a) 2

WEN-CHINGLIEN Calculus (I)

(24)

C= −F(a)

G(x) = F(x) −F(a)

⇒ Rx

a f(u)du =F(x) −F(a) 2

WEN-CHINGLIEN Calculus (I)

(25)

C= −F(a)

G(x) = F(x) −F(a)

⇒ Rx

a f(u)du =F(x) −F(a) 2

WEN-CHINGLIEN Calculus (I)

(26)

Exercises:

1 R2

1 x2− 2 xdx

2 Rπ

0 cosx dx

3 R1

0 xe2x 2dx

4 Re

1

1 xdx

WEN-CHINGLIEN Calculus (I)

(27)

Exercises:

1 R2

1 x2− 2 xdx

2 Rπ

0 cosx dx

3 R1

0 xe2x 2dx

4 Re

1

1 xdx

WEN-CHINGLIEN Calculus (I)

(28)

Exercises:

1 R2

1 x2− 2 xdx

2 Rπ

0 cosx dx

3 R1

0 xe2x 2dx

4 Re

1

1 xdx

WEN-CHINGLIEN Calculus (I)

(29)

Exercises:

1 R2

1 x2− 2 xdx

2 Rπ

0 cosx dx

3 R1

0 xe2x 2dx

4 Re

1

1 xdx

WEN-CHINGLIEN Calculus (I)

(30)

Example:

Compute the following integrals

R (x −1)2 R cos3x dx R1

0(x2−√ x)dx

WEN-CHINGLIEN Calculus (I)

(31)

Example:

Compute the following integrals

R (x −1)2 R cos3x dx R1

0(x2−√ x)dx

WEN-CHINGLIEN Calculus (I)

(32)

Example:

Compute the following integrals

R (x −1)2 R cos3x dx R1

0(x2−√ x)dx

WEN-CHINGLIEN Calculus (I)

(33)

Exercises:

R

2

0

2te

t2

dt

h

lim

0

1 h

R

h 0

e

x

dx

Suppose that R

x

0

f ( t ) dt = 2x

2

, find f ( x )

WEN-CHINGLIEN Calculus (I)

(34)

Exercises:

R

2

0

2te

t2

dt

h

lim

0

1 h

R

h 0

e

x

dx Suppose that R

x

0

f ( t ) dt = 2x

2

, find f ( x )

WEN-CHINGLIEN Calculus (I)

(35)

Exercises:

R

2

0

2te

t2

dt

h

lim

0

1 h

R

h 0

e

x

dx Suppose that R

x

0

f ( t ) dt = 2x

2

, find f ( x )

WEN-CHINGLIEN Calculus (I)

(36)

Example:

f(x) =

 0 , if x is irrational,

1 , if x is rational, for 0≤ x ≤1.

DoesR1

0 f(x)dx exist ?

WEN-CHINGLIEN Calculus (I)

(37)

Thank you.

WEN-CHINGLIEN Calculus (I)

Figure

Updating...

References

Related subjects :