Calculus (I)
WEN-CHING LIEN
Department of Mathematics National Cheng Kung University
2008
WEN-CHINGLIEN Calculus (I)
5.3 The Fundamental Theorem of Calculus.
Theorem (I)
If f is continuous on[a,b],then the function F defined by
F(x) = Z x
a
f(u)du, a≤x ≤b
is continuous on [a,b]and differentiable on(a,b),and d
dxF(x) =f(x)
WEN-CHINGLIEN Calculus (I)
pf of Theorem I:
d
dx F ( x ) = lim
h→0
1 h
R
x+hx
f ( u ) du
For u ∈ [ x , x + h] , m ≤ f (u ) ≤ M
⇒ m ≤ 1 h
R
x+hx
f (u)du ≤ M
WEN-CHINGLIEN Calculus (I)
pf of Theorem I:
d
dx F ( x ) = lim
h→0
1 h
R
x+hx
f ( u ) du
For u ∈ [ x , x + h] , m ≤ f (u ) ≤ M
⇒ m ≤ 1 h
R
x+hx
f (u)du ≤ M
WEN-CHINGLIEN Calculus (I)
pf of Theorem I:
d
dx F ( x ) = lim
h→0
1 h
R
x+hx
f ( u ) du
For u ∈ [ x , x + h] , m ≤ f (u ) ≤ M
⇒ m ≤ 1 h
R
x+hx
f (u)du ≤ M
WEN-CHINGLIEN Calculus (I)
⇒ I.V.T. ∃Ch∈ [x,x+h]
such that f(Ch) = Ih, lim
h→0Ch=x
∵f is continuous, lim
h→0f(Ch) =f(x)
⇒ d
dxF(x) =f(x). 2
WEN-CHINGLIEN Calculus (I)
⇒ I.V.T. ∃Ch∈ [x,x+h]
such that f(Ch) = Ih, lim
h→0Ch=x
∵f is continuous, lim
h→0f(Ch) =f(x)
⇒ d
dxF(x) =f(x). 2
WEN-CHINGLIEN Calculus (I)
⇒ I.V.T. ∃Ch∈ [x,x+h]
such that f(Ch) = Ih, lim
h→0Ch=x
∵f is continuous, lim
h→0f(Ch) =f(x)
⇒ d
dxF(x) =f(x). 2
WEN-CHINGLIEN Calculus (I)
Remark:
(1)F(x) =Rx
a f(u)du
⇒ F′(x) =f(x)
⇒ F(x)is an anti-derivative of f(x)
We call R
f(x)dx an indefinite integral.
WEN-CHINGLIEN Calculus (I)
Remark:
(1)F(x) =Rx
a f(u)du
⇒ F′(x) =f(x)
⇒ F(x)is an anti-derivative of f(x)
We call R
f(x)dx an indefinite integral.
WEN-CHINGLIEN Calculus (I)
Remark:
(1)F(x) =Rx
a f(u)du
⇒ F′(x) =f(x)
⇒ F(x)is an anti-derivative of f(x)
We call R
f(x)dx an indefinite integral.
WEN-CHINGLIEN Calculus (I)
Remark:
(1)F(x) =Rx
a f(u)du
⇒ F′(x) =f(x)
⇒ F(x)is an anti-derivative of f(x)
We call R
f(x)dx an indefinite integral.
WEN-CHINGLIEN Calculus (I)
Exercises:
1
R ( sinx + x
3) dx
2
R 1
x dx
WEN-CHINGLIEN Calculus (I)
Exercises:
1
R ( sinx + x
3) dx
2
R 1
x dx
WEN-CHINGLIEN Calculus (I)
Theorem (Leibniz′s Rule) d
dx Z h(x)
g(x)
f(u)du =f(h(x))h′(x) −f(g(x))g′(x) Here f is continuous ,g and h are differentiable
WEN-CHINGLIEN Calculus (I)
Exercises:
1 d
dx Rx
0(eu2−u)du
2 d
dx Rsinx
0 (x2−2x)dx
3 d
dx Rx3
x2 udu
WEN-CHINGLIEN Calculus (I)
Exercises:
1 d
dx Rx
0(eu2−u)du
2 d
dx Rsinx
0 (x2−2x)dx
3 d
dx Rx3
x2 udu
WEN-CHINGLIEN Calculus (I)
Exercises:
1 d
dx Rx
0(eu2−u)du
2 d
dx Rsinx
0 (x2−2x)dx
3 d
dx Rx3
x2 udu
WEN-CHINGLIEN Calculus (I)
Theorem (II)
Assume that f is continuous on [a,b],them Z b
a
f(x)dx =F(b) −F(a), where F(x)is an anti-derivative of f(x)
WEN-CHINGLIEN Calculus (I)
pf of Theorem II:
G(x ) ≡ R
xa
f (u)du
⇒ G(x) = F (x ) + C
⇒ G(a) = 0, G(a) = F (a) + C
WEN-CHINGLIEN Calculus (I)
pf of Theorem II:
G(x ) ≡ R
xa
f (u)du
⇒ G(x) = F (x ) + C
⇒ G(a) = 0, G(a) = F (a) + C
WEN-CHINGLIEN Calculus (I)
pf of Theorem II:
G(x ) ≡ R
xa
f (u)du
⇒ G(x) = F (x ) + C
⇒ G(a) = 0, G(a) = F (a) + C
WEN-CHINGLIEN Calculus (I)
⇒ C= −F(a)
⇒ G(x) = F(x) −F(a)
⇒ Rx
a f(u)du =F(x) −F(a) 2
WEN-CHINGLIEN Calculus (I)
⇒ C= −F(a)
⇒ G(x) = F(x) −F(a)
⇒ Rx
a f(u)du =F(x) −F(a) 2
WEN-CHINGLIEN Calculus (I)
⇒ C= −F(a)
⇒ G(x) = F(x) −F(a)
⇒ Rx
a f(u)du =F(x) −F(a) 2
WEN-CHINGLIEN Calculus (I)
Exercises:
1 R2
1 x2− 2 xdx
2 Rπ
0 cosx dx
3 R1
0 xe−2x 2dx
4 Re
1
1 xdx
WEN-CHINGLIEN Calculus (I)
Exercises:
1 R2
1 x2− 2 xdx
2 Rπ
0 cosx dx
3 R1
0 xe−2x 2dx
4 Re
1
1 xdx
WEN-CHINGLIEN Calculus (I)
Exercises:
1 R2
1 x2− 2 xdx
2 Rπ
0 cosx dx
3 R1
0 xe−2x 2dx
4 Re
1
1 xdx
WEN-CHINGLIEN Calculus (I)
Exercises:
1 R2
1 x2− 2 xdx
2 Rπ
0 cosx dx
3 R1
0 xe−2x 2dx
4 Re
1
1 xdx
WEN-CHINGLIEN Calculus (I)
Example:
Compute the following integrals
R (x −1)2 R cos3x dx R1
0(x2−√ x)dx
WEN-CHINGLIEN Calculus (I)
Example:
Compute the following integrals
R (x −1)2 R cos3x dx R1
0(x2−√ x)dx
WEN-CHINGLIEN Calculus (I)
Example:
Compute the following integrals
R (x −1)2 R cos3x dx R1
0(x2−√ x)dx
WEN-CHINGLIEN Calculus (I)
Exercises:
R
20
2te
t2dt
h
lim
→01 h
R
h 0e
xdx
Suppose that R
x0
f ( t ) dt = 2x
2, find f ( x )
WEN-CHINGLIEN Calculus (I)
Exercises:
R
20
2te
t2dt
h
lim
→01 h
R
h 0e
xdx Suppose that R
x0
f ( t ) dt = 2x
2, find f ( x )
WEN-CHINGLIEN Calculus (I)
Exercises:
R
20
2te
t2dt
h
lim
→01 h
R
h 0e
xdx Suppose that R
x0
f ( t ) dt = 2x
2, find f ( x )
WEN-CHINGLIEN Calculus (I)
Example:
f(x) =
0 , if x is irrational,
1 , if x is rational, for 0≤ x ≤1.
DoesR1
0 f(x)dx exist ?
WEN-CHINGLIEN Calculus (I)
Thank you.
WEN-CHINGLIEN Calculus (I)