• 沒有找到結果。

Supplementary Material to: Electronic Properties of Cyclacenes from TAO-DFT

N/A
N/A
Protected

Academic year: 2022

Share "Supplementary Material to: Electronic Properties of Cyclacenes from TAO-DFT"

Copied!
20
0
0

加載中.... (立即查看全文)

全文

(1)

Supplementary Material to: Electronic Properties of Cyclacenes from TAO-DFT

Chun-Shian Wu,1, 2, Pei-Yin Lee,1, and Jeng-Da Chai1, 3,

1Department of Physics, National Taiwan University, Taipei 10617, Taiwan

2Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan

3Center for Theoretical Sciences and Center for Quantum Science and Engineering, National Taiwan University, Taipei 10617, Taiwan

These authors contributed equally to this work.

Author to whom correspondence should be addressed. Electronic mail: jdchai@phys.ntu.edu.tw

(2)

LIST OF TABLES

S1 Singlet-triplet energy gap (in kcal/mol) of n-cyclacene as a function of the number of benzene rings, calculated using TAO-LDA and KS-LDA. For com- parison, the CASPT2, KS-M06L, and KS-B3LYP data are taken from the literature [1]. . . 3 S2 Singlet-triplet energy gap (in kcal/mol) of n-cyclacene/n-acene as a function

of the number of benzene rings, calculated using TAO-LDA. . . 3 S3 Vertical ionization potential (in eV) for the lowest singlet state of n-cyclacene/n-

acene as a function of the number of benzene rings, calculated using TAO-LDA. 7 S4 Vertical electron affinity (in eV) for the lowest singlet state of n-cyclacene/n-

acene as a function of the number of benzene rings, calculated using TAO-LDA. 10 S5 Fundamental gap (in eV) for the lowest singlet state of n-cyclacene/n-acene

as a function of the number of benzene rings, calculated using TAO-LDA. . . . 14 S6 Symmetrized von Neumann entropy for the lowest singlet state of n-cyclacene/n-

acene as a function of the number of benzene rings, calculated using TAO-LDA. 17

(3)

[1] Sadowsky, D., McNeill, K. & Cramer, C. J. Electronic structures of [n]-cyclacenes (n = 6-12) and short, hydrogen-capped, carbon nanotubes. Farad. Discuss, 145, 507–521 (2010).

TABLES

TABLE S1. Singlet-triplet energy gap (in kcal/mol) of n-cyclacene as a function of the number of benzene rings, calculated using TAO-LDA and KS-LDA. For comparison, the CASPT2, KS-M06L, and KS-B3LYP data are taken from the literature [1].

n TAO-LDA KS-LDA CASPT2 KS-M06L KS-B3LYP

4 36.72 40.93

5 6.01 7.52

6 9.96 8.95 12.00 12.31 15.97

7 6.10 10.45 12.00 7.70 9.87

8 11.14 10.02 14.51 13.10 21.85

9 2.84 3.32 8.01 4.59 6.93

10 9.02 10.78 11.40 13.60 54.76

11 2.49 2.64 7.50 3.80 6.67

12 6.35 11.31 13.77 10.99

13 2.77 2.74

14 4.28 10.81

15 3.04 3.43

16 3.09 8.13

17 3.06 4.69

18 2.52 4.51

19 2.83 6.16

20 2.25 2.86

(4)

TABLE S2. Singlet-triplet energy gap (in kcal/mol) of n-cyclacene/n-acene as a function of the number of benzene rings, calculated using TAO-LDA.

n n-cyclacene n-acene

4 36.72 29.01

5 6.01 19.60

6 9.96 13.55

7 6.10 9.91

8 11.14 7.85

9 2.84 6.66

10 9.02 5.91

11 2.49 5.32

12 6.35 4.82

13 2.77 4.38

14 4.28 3.98

15 3.04 3.65

16 3.09 3.37

17 3.06 3.14

18 2.52 2.94

19 2.83 2.77

20 2.25 2.62

21 2.51 2.49

22 2.11 2.37

23 2.21 2.25

24 2.00 2.15

25 1.97 2.06

26 1.89 1.98

27 1.80 1.90

28 1.77 1.83

29 1.67 1.76

30 1.65 1.70

(5)

31 1.57 1.64

32 1.54 1.59

33 1.48 1.54

34 1.44 1.49

35 1.40 1.45

36 1.36 1.40

37 1.32 1.36

38 1.28 1.33

39 1.25 1.29

40 1.22 1.26

41 1.19 1.23

42 1.16 1.20

43 1.14 1.17

44 1.11 1.14

45 1.09 1.11

46 1.06 1.09

47 1.04 1.07

48 1.02 1.04

49 1.00 1.02

50 0.98 1.00

51 0.96 0.98

52 0.93 0.96

53 0.92 0.94

54 0.90 0.92

55 0.89 0.91

56 0.87 0.89

57 0.86 0.87

58 0.84 0.86

59 0.83 0.84

60 0.81 0.83

(6)

61 0.80 0.82

62 0.79 0.80

63 0.77 0.79

64 0.76 0.78

65 0.75 0.76

66 0.74 0.75

67 0.73 0.74

68 0.72 0.73

69 0.71 0.72

70 0.70 0.71

71 0.69 0.70

72 0.68 0.69

73 0.67 0.68

74 0.66 0.67

75 0.65 0.66

76 0.64 0.65

77 0.63 0.64

78 0.63 0.64

79 0.62 0.63

80 0.61 0.62

81 0.60 0.61

82 0.60 0.60

83 0.59 0.60

84 0.58 0.59

85 0.57 0.58

86 0.57 0.58

87 0.56 0.57

88 0.55 0.56

89 0.55 0.56

90 0.54 0.55

(7)

91 0.54 0.54

92 0.53 0.54

93 0.52 0.53

94 0.52 0.53

95 0.51 0.52

96 0.51 0.51

97 0.50 0.51

98 0.50 0.50

99 0.49 0.50

100 0.49 0.49

TABLE S3. Vertical ionization potential (in eV) for the lowest singlet state of n-cyclacene/n-acene as a function of the number of benzene rings, calculated using TAO-LDA.

n n-cyclacene n-acene

4 6.99 6.46

5 5.95 6.07

6 5.73 5.79

7 5.53 5.59

8 5.59 5.44

9 5.33 5.33

10 5.41 5.23

11 5.21 5.15

12 5.24 5.08

13 5.12 5.01

14 5.10 4.96

15 5.04 4.91

16 4.99 4.86

17 4.96 4.82

18 4.91 4.78

(8)

19 4.89 4.75

20 4.84 4.71

21 4.82 4.68

22 4.78 4.66

23 4.76 4.63

24 4.73 4.61

25 4.71 4.59

26 4.69 4.57

27 4.67 4.55

28 4.65 4.53

29 4.63 4.51

30 4.61 4.50

31 4.59 4.48

32 4.57 4.47

33 4.56 4.45

34 4.54 4.44

35 4.53 4.43

36 4.52 4.42

37 4.50 4.40

38 4.49 4.39

39 4.48 4.38

40 4.47 4.37

41 4.45 4.36

42 4.44 4.35

43 4.43 4.35

44 4.42 4.34

45 4.41 4.33

46 4.40 4.32

47 4.40 4.31

48 4.39 4.31

(9)

49 4.38 4.30

50 4.37 4.29

51 4.36 4.29

52 4.36 4.28

53 4.35 4.27

54 4.34 4.27

55 4.33 4.26

56 4.33 4.26

57 4.32 4.25

58 4.32 4.24

59 4.31 4.24

60 4.30 4.23

61 4.30 4.23

62 4.29 4.23

63 4.29 4.22

64 4.28 4.22

65 4.28 4.21

66 4.27 4.21

67 4.27 4.20

68 4.26 4.20

69 4.26 4.20

70 4.25 4.19

71 4.25 4.19

72 4.24 4.18

73 4.24 4.18

74 4.23 4.18

75 4.23 4.17

76 4.23 4.17

77 4.22 4.17

78 4.22 4.16

(10)

79 4.22 4.16

80 4.21 4.16

81 4.21 4.15

82 4.20 4.15

83 4.20 4.15

84 4.20 4.15

85 4.19 4.14

86 4.19 4.14

87 4.19 4.14

88 4.18 4.14

89 4.18 4.13

90 4.18 4.13

91 4.18 4.13

92 4.17 4.13

93 4.17 4.12

94 4.17 4.12

95 4.16 4.12

96 4.16 4.12

97 4.16 4.11

98 4.16 4.11

99 4.15 4.11

100 4.15 4.11

TABLE S4. Vertical electron affinity (in eV) for the lowest singlet state of n-cyclacene/n-acene as a function of the number of benzene rings, calculated using TAO-LDA.

n n-cyclacene n-acene

4 0.19 0.90

5 1.23 1.34

6 1.17 1.66

7 1.45 1.89

(11)

8 1.53 2.06

9 1.88 2.19

10 1.88 2.30

11 2.14 2.39

12 2.15 2.48

13 2.33 2.55

14 2.36 2.61

15 2.47 2.67

16 2.52 2.72

17 2.58 2.77

18 2.64 2.81

19 2.68 2.85

20 2.73 2.89

21 2.77 2.92

22 2.81 2.95

23 2.84 2.98

24 2.88 3.00

25 2.90 3.03

26 2.93 3.05

27 2.96 3.07

28 2.98 3.09

29 3.01 3.11

30 3.03 3.13

31 3.05 3.15

32 3.07 3.16

33 3.09 3.18

34 3.11 3.19

35 3.12 3.21

36 3.14 3.22

37 3.15 3.23

(12)

38 3.17 3.25

39 3.18 3.26

40 3.19 3.27

41 3.21 3.28

42 3.22 3.29

43 3.23 3.30

44 3.24 3.31

45 3.25 3.32

46 3.26 3.33

47 3.27 3.33

48 3.28 3.34

49 3.29 3.35

50 3.30 3.36

51 3.31 3.36

52 3.32 3.37

53 3.32 3.38

54 3.33 3.39

55 3.34 3.39

56 3.35 3.40

57 3.35 3.40

58 3.36 3.41

59 3.37 3.42

60 3.37 3.42

61 3.38 3.43

62 3.39 3.43

63 3.39 3.44

64 3.40 3.44

65 3.40 3.45

66 3.41 3.45

67 3.41 3.46

(13)

68 3.42 3.46

69 3.42 3.46

70 3.43 3.47

71 3.43 3.47

72 3.44 3.48

73 3.44 3.48

74 3.45 3.48

75 3.45 3.49

76 3.46 3.49

77 3.46 3.50

78 3.46 3.50

79 3.47 3.50

80 3.47 3.51

81 3.48 3.51

82 3.48 3.51

83 3.48 3.52

84 3.49 3.52

85 3.49 3.52

86 3.49 3.52

87 3.50 3.53

88 3.50 3.53

89 3.50 3.53

90 3.51 3.54

91 3.51 3.54

92 3.51 3.54

93 3.52 3.54

94 3.52 3.55

95 3.52 3.55

96 3.52 3.55

97 3.53 3.55

(14)

98 3.53 3.56

99 3.53 3.56

100 3.53 3.56

TABLE S5. Fundamental gap (in eV) for the lowest singlet state of n-cyclacene/n-acene as a function of the number of benzene rings, calculated using TAO-LDA.

n n-cyclacene n-acene

4 6.81 5.56

5 4.72 4.73

6 4.56 4.13

7 4.08 3.69

8 4.06 3.38

9 3.45 3.13

10 3.53 2.93

11 3.07 2.76

12 3.09 2.60

13 2.79 2.46

14 2.74 2.34

15 2.57 2.23

16 2.47 2.13

17 2.38 2.05

18 2.27 1.97

19 2.21 1.89

20 2.11 1.83

21 2.05 1.76

22 1.97 1.71

23 1.92 1.65

24 1.86 1.60

25 1.81 1.56

26 1.75 1.52

(15)

27 1.71 1.47

28 1.66 1.44

29 1.62 1.40

30 1.58 1.37

31 1.54 1.33

32 1.50 1.30

33 1.47 1.27

34 1.44 1.25

35 1.41 1.22

36 1.38 1.20

37 1.35 1.17

38 1.32 1.15

39 1.30 1.13

40 1.27 1.11

41 1.25 1.09

42 1.22 1.07

43 1.20 1.05

44 1.18 1.03

45 1.16 1.01

46 1.14 1.00

47 1.12 0.98

48 1.11 0.96

49 1.09 0.95

50 1.07 0.94

51 1.05 0.92

52 1.04 0.91

53 1.02 0.89

54 1.01 0.88

55 0.99 0.87

56 0.98 0.86

(16)

57 0.97 0.85

58 0.95 0.84

59 0.94 0.82

60 0.93 0.81

61 0.92 0.80

62 0.91 0.79

63 0.89 0.78

64 0.88 0.77

65 0.87 0.77

66 0.86 0.76

67 0.85 0.75

68 0.84 0.74

69 0.83 0.73

70 0.82 0.72

71 0.81 0.72

72 0.80 0.71

73 0.80 0.70

74 0.79 0.69

75 0.78 0.69

76 0.77 0.68

77 0.76 0.67

78 0.75 0.67

79 0.75 0.66

80 0.74 0.65

81 0.73 0.65

82 0.72 0.64

83 0.72 0.63

84 0.71 0.63

85 0.70 0.62

86 0.70 0.62

(17)

87 0.69 0.61

88 0.69 0.61

89 0.68 0.60

90 0.67 0.59

91 0.67 0.59

92 0.66 0.58

93 0.66 0.58

94 0.65 0.58

95 0.64 0.57

96 0.64 0.57

97 0.63 0.56

98 0.63 0.56

99 0.62 0.55

100 0.62 0.55

TABLE S6. Symmetrized von Neumann entropy for the lowest singlet state of n-cyclacene/n-acene as a function of the number of benzene rings, calculated using TAO-LDA.

n n-cyclacene n-acene

4 0.04 0.15

5 1.51 0.40

6 1.03 0.75

7 1.53 1.08

8 0.99 1.34

9 2.50 1.52

10 1.23 1.67

11 2.80 1.82

12 1.74 1.98

13 2.83 2.16

14 2.42 2.36

15 2.90 2.55

(18)

16 3.06 2.75

17 3.10 2.94

18 3.55 3.13

19 3.43 3.31

20 3.92 3.50

21 3.85 3.69

22 4.24 3.88

23 4.29 4.07

24 4.55 4.26

25 4.72 4.44

26 4.90 4.63

27 5.11 4.82

28 5.26 5.01

29 5.49 5.20

30 5.64 5.39

31 5.86 5.58

32 6.03 5.77

33 6.23 5.95

34 6.41 6.14

35 6.60 6.33

36 6.79 6.52

37 6.98 6.71

38 7.17 6.90

39 7.36 7.09

40 7.55 7.27

41 7.73 7.46

42 7.92 7.65

43 8.11 7.84

44 8.30 8.03

45 8.49 8.22

(19)

46 8.68 8.41

47 8.87 8.59

48 9.06 8.78

49 9.24 8.97

50 9.43 9.16

51 9.62 9.35

52 9.81 9.54

53 10.00 9.73

54 10.19 9.92

55 10.38 10.10

56 10.56 10.29

57 10.75 10.48

58 10.94 10.67

59 11.13 10.86

60 11.32 11.05

61 11.51 11.23

62 11.70 11.42

63 11.89 11.61

64 12.07 11.80

65 12.26 11.99

66 12.45 12.18

67 12.64 12.37

68 12.83 12.56

69 13.02 12.74

70 13.21 12.93

71 13.39 13.12

72 13.58 13.31

73 13.77 13.50

74 13.96 13.69

75 14.15 13.88

(20)

76 14.34 14.06

77 14.53 14.25

78 14.71 14.44

79 14.90 14.63

80 15.09 14.82

81 15.28 15.01

82 15.47 15.20

83 15.66 15.38

84 15.85 15.57

85 16.04 15.76

86 16.22 15.95

87 16.41 16.14

88 16.60 16.33

89 16.79 16.52

90 16.98 16.70

91 17.17 16.89

92 17.36 17.08

93 17.54 17.27

94 17.73 17.46

95 17.92 17.65

96 18.11 17.84

97 18.30 18.02

98 18.49 18.21

99 18.68 18.40

100 18.86 18.59

參考文獻

相關文件

利用 determinant 我 們可以判斷一個 square matrix 是否為 invertible, 也可幫助我們找到一個 invertible matrix 的 inverse, 甚至將聯立方成組的解寫下.

Wang, Solving pseudomonotone variational inequalities and pseudocon- vex optimization problems using the projection neural network, IEEE Transactions on Neural Networks 17

Then, we tested the influence of θ for the rate of convergence of Algorithm 4.1, by using this algorithm with α = 15 and four different θ to solve a test ex- ample generated as

Numerical results are reported for some convex second-order cone programs (SOCPs) by solving the unconstrained minimization reformulation of the KKT optimality conditions,

Particularly, combining the numerical results of the two papers, we may obtain such a conclusion that the merit function method based on ϕ p has a better a global convergence and

Then, it is easy to see that there are 9 problems for which the iterative numbers of the algorithm using ψ α,θ,p in the case of θ = 1 and p = 3 are less than the one of the

By exploiting the Cartesian P -properties for a nonlinear transformation, we show that the class of regularized merit functions provides a global error bound for the solution of

In BHJ solar cells using P3HT:PCBM, adjustment of surface energy and work function of ITO may lead to a tuneable morphology for the active layer and hole injection barrier