• 沒有找到結果。

But this last integral is precisely the line integral in (10). Therefore we have

N/A
N/A
Protected

Academic year: 2022

Share "But this last integral is precisely the line integral in (10). Therefore we have"

Copied!
2
0
0

加載中.... (立即查看全文)

全文

(1)

Section 16.2 Line Integrals

8. Evaluate the line integral, where C is the given plane curve. R

Cx2dx + y2dy.

SECTION 16.2 Line Integrals 1141

But this last integral is precisely the line integral in (10). Therefore we have

y

C

F  dr − y

C

P dx 1 Q dy 1 R dz where F − P i 1 Q j 1 R k

For example, the integral y

C

y dx 1 z dy 1 x dz in Example 6 could be expressed as y

C

F  dr, where

F

sx, y, zd − y i 1 z j 1 x k A similar result holds for vector fields F on R

2

:

14

y

C

F  dr − y

C

P dx 1 Q dy

where F − P i 1 Q j.

16.2 Exercises

1–8 Evaluate the line integral, where C is the given plane curve.

1. yC y ds, C: x − t2, y − 2t, 0 < t < 3 2. yC sxyyd ds, C: x − t3, y − t4, 1 < t < 2

3. yC xy4 ds, C is the right half of the circle x21y2− 16 4. yC xey ds, C is the line segment from s2, 0d to s5, 4d 5. yC sx2y 1sin xd dy,

C is the arc of the parabola y − x2 from s0, 0d to s, 2d 6. yC ex dx,

C is the arc of the curve x − y3 from s21, 21d to s1, 1d 7. yC sx 1 2yd dx 1 x2 dy

0 y

x C

(2, 1)

(3, 0)

8. yC x2 dx 1 y2 dy

≈+¥=4

0 y

x C

(2, 0) (0, 2)

(_1, 1)

9–18 Evaluate the line integral, where C is the given space curve.

9. yC x2y ds,

C: x − cos t, y − sin t, z − t, 0 < t < y2 10. yC y2z ds,

C is the line segment from s3, 1, 2d to s1, 2, 5d 11. yC xeyz ds,

C is the line segment from (0, 0, 0) to (1, 2, 3) 12. yC sx21y21z2d ds,

C: x − t, y − cos 2t, z − sin 2t, 0 < t < 2

13. yC xyeyz dy, C: x − t, y − t2, z − t3, 0 < t < 1 14. yC yez dz 1 x ln x dy 2 y dx,

C: x − et, y − 2t, z − ln t, 1 < t < 2 15. yC z dx 1 xy dy 1 y2 dz,

C: x − sin t, y − cos t, z − tan t, 2y4 < t < y4 16. yC y dx 1 z dy 1 x dz,

C: x −st, y − t, z − t2, 1 < t < 4 17. yC z2 dx 1 x2 dy 1 y2 dz,

C is the line segment from s1, 0, 0d to s4, 1, 2d 18. yC sy 1 zd dx 1 sx 1 zd dy 1 sx 1 yd dz,

C consists of line segments from s0, 0, 0d to s1, 0, 1d and from s1, 0, 1d to s0, 1, 2d

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Solution:

1618 ¤ CHAPTER 16 VECTOR CALCULUS

6. Choosing  as the parameter, we have  = 3,  = , −1 ≤  ≤ 1. Then

 =1

−13· 32 = 31

−1= 1− −1=  −1.

7.  = 1+ 2

On 1:  = ,  = 12 ⇒  = 12, 0 ≤  ≤ 2.

On 2:  = ,  = 3 −  ⇒  = −, 2 ≤  ≤ 3.

Then

( + 2)  + 2 =

1( + 2)  + 2 +

2( + 2)  + 2

=2 0

 + 21

2

+ 21

2

 +3 2

 + 2(3 − ) + 2(−1)



=2 0

2 +122

 +3 2

6 −  − 2



=

2+1632 0+

6 −1221333

2= 163 − 0 +92223 = 52

8.  = 1+ 2

On 1:  = 2 cos  ⇒  = −2 sin  ,

 = 2 sin  ⇒  = 2 cos  , 0 ≤  ≤ 2. On 2:  = − ⇒  = −,

 = 2 −  ⇒  = −, 0 ≤  ≤ 1.

Then 

2 + 2 =

12 + 2 +

22 + 2

=2

0 (2 cos )2(−2 sin  ) + (2 sin )2(2 cos  ) +1

0(−)2(−) + (2 − )2(−)

=2

0 (−8 cos2 sin  + 8 sin2 cos )  − 21

0(2− 2 + 2) 

= 81

3cos3 +13sin32

0 − 21

33− 2+ 21

0= 81 313

− 21

3− 1 + 2

= −83

9.  = cos ,  = sin ,  = , 0 ≤  ≤ 2. Then by Formula 9,

2  =2

0 (cos )2(sin )



2 +



2 +



2



=2

0 cos2 sin 

(− sin )2+ (cos )2+ (1)2 =2

0 cos2 sin 

sin2 + cos2 + 1 

=√ 22

0 cos2 sin   =√ 2

13cos32

0 =√

2 0 +13

= 32

10. Parametric equations for the line segment  from (3 1 2) to (1 2 5) are  = 3 − 2,  = 1 + ,  = 2 + 3, 0 ≤  ≤ 1.

Then by Formula 9,

2  =1

0 (1 + )2(2 + 3)

(−2)2+ 12+ 32 =√ 141

0 (33+ 82+ 7 + 2) 

=√ 143

44+833+722+ 21 0=√

143

4+ 83+72+ 2

= 10712 √ 14

° 2021 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

12. Evaluate the line integral, where C is the given space curve. R

C(x2+ y2+ z2)ds, C : x = t, y = cos 2t, z = sin 2t, 0 ≤ t ≤ 2π.

Solution:

640 ¤ CHAPTER 16 VECTOR CALCULUS

9.  = cos ,  = sin ,  = , 0 ≤  ≤ 2. Then by Formula 9,

2  =2

0 (cos )2(sin )



2

+



2 +



2



=2

0 cos2 sin 

(− sin )2+ (cos )2+ (1)2 =2

0 cos2 sin 

sin2 + cos2 + 1 

=√ 22

0 cos2 sin   =√ 2

13cos32

0 =√

2 0 +13

= 32 10. Parametric equations for  are  = 3 − 2,  = 1 + ,  = 2 + 3, 0 ≤  ≤ 1. Then

2  =1

0 (1 + )2(2 + 3)

(−2)2+ 12+ 32 =√ 14 1

0 (33+ 82+ 7 + 2) 

=√ 143

44+833+722+ 21 0=√

143

4+83+ 72+ 2

= 10712√ 14 11. Parametric equations for  are  = ,  = 2,  = 3, 0 ≤  ≤ 1. Then

 =1

0 (2)(3)

12+ 22+ 32 =√ 141

0 62 =√ 14

1 12621

0= 1214(6− 1).

12. Parametric equations for  are  = −1 + 2,  = 5 + ,  = 4, 0 ≤  ≤ 1. Then

2 =1

0 (−1 + 2)(5 + )(4)2

22+ 12+ 42 =√ 211

0 (324+ 1443− 802) 

=√ 21

 32 ·5

5 + 144 ·4

4 − 80 ·3 3

1 0

=√ 2132

5 + 36 −803

= 23615√ 21

13.

 =1

0()(2)(2)(3)· 2  =1

0 245 = 2551

0= 25(1− 0) = 25( − 1) 14.

  +   +   =1

02· 2  + 2· 32 + 3· 2  =1

0(23+ 54)  =1

24+ 51

0= 12+ 1 = 32 15. Parametric equations for  are  = 1 + 3,  = ,  = 2, 0 ≤  ≤ 1. Then

2 + 2 + 2 =1

0(2)2· 3  + (1 + 3)2 + 2· 2  =1 0

232+ 6 + 1



=23

33+ 32+ 1

0= 233 + 3 + 1 = 353

16. On 1:  =  ⇒  =   = 0 ⇒

 = 0   =  ⇒  =  0 ≤  ≤ 1.

On 2:  = 1 −  ⇒  = −  =  ⇒

 =   = 1 +  ⇒  =  0 ≤  ≤ 1.

Then

( + )  + ( + )  + ( + ) 

=

1( + )  + ( + )  + ( + )  +

2( + )  + ( + )  + ( + ) 

=1

0(0 + )  + ( + ) · 0  + ( + 0)  +1

0( + 1 + )(−) + (1 −  + 1 + )  + (1 −  + ) 

=1

0 2  +1

0(−2 + 2)  =

21 0+

−2+ 21

0= 1 + 1 = 2

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

20. The figure shows a vector field F and two curves C1 and C2. Are the line integrals of F over C1 and C2 positive, negative, or zero? Explain.

SeCtion16.2 Line Integrals 1085

24. yC F  dr, where Fsx, y, zd − yzex i 1 zxey j 1 xyez k and rstd − sin t i 1 cos t j 1 tan t k, 0 < t < y4

25. yC xy arctan z ds, where C has parametric equations x − t2, y − t3, z −st , 1 < t < 2

26. yC z lnsx 1 yd ds, where C has parametric equations x − 1 1 3t, y − 2 1 t2, z − t4, 21 < t < 1

27–28 Use a graph of the vector field F and the curve C to guess whether the line integral of F over C is positive, negative, or zero. Then evaluate the line integral.

27. Fsx, yd − sx 2 yd i 1 xy j,

C is the arc of the circle x21y2− 4 traversed counter­

clockwise from (2, 0) to s0, 22d 28. Fsx, yd − x

sx21y2 i 1 y sx21y2 j,

C is the parabola y − 1 1 x2 from s21, 2d to (1, 2)

29. (a) Evaluate the line integral yC F  dr, where Fsx, yd − ex21 i 1 xy j and C is given by rstd − t2 i 1 t3 j, 0 < t < 1.

(b) Illustrate part (a) by using a graphing calculator or com­

puter to graph C and the vectors from the vector field corresponding to t − 0, 1ys2, and 1 (as in Figure 13).

30. (a) Evaluate the line integral yC F  dr, where Fsx, y, zd − x i 2 z j 1 y k and C is given by rstd − 2t i 1 3t j 2 t2 k, 21 < t < 1.

(b) Illustrate part (a) by using a computer to graph C and the vectors from the vector field corresponding to t − 61 and 612 (as in Figure 13).

31. Find the exact value of yC x3y2zds, where C is the curve with parametric equations x − e2t cos 4t, y − e2t sin 4t, z − e2t, 0 < t < 2.

32. (a) Find the work done by the force field

Fsx, yd − x2 i 1 xy j on a particle that moves once around the circle x21y2− 4 oriented in the counter­

clockwise direction.

(b) Use a computer algebra system to graph the force field and circle on the same screen. Use the graph to explain your answer to part (a).

33. A thin wire is bent into the shape of a semicircle x21y2− 4, x > 0. If the linear density is a constant k, find the mass and center of mass of the wire.

34. A thin wire has the shape of the first­quadrant part of the circle with center the origin and radius a. If the density function is sx, yd − kxy, find the mass and center of mass of the wire.

35. (a) Write the formulas similar to Equations 4 for the center of mass sx, y, zd of a thin wire in the shape of a space curve C if the wire has density function sx, y, zd.

CAS

;

;

CAS

CAS

17. Let F be the vector field shown in the figure.

(a) If C1 is the vertical line segment from s23, 23d to s23, 3d, determine whether yC1 F  dr is positive, nega­

tive, or zero.

(b) If C2 is the counterclockwise­oriented circle with radius 3 and center the origin, determine whether yC2 F  dr is positive, negative, or zero.

y

x

0 1

1

2 3

2 3

_3 _2 _1

_3 _2 _1

18. The figure shows a vector field F and two curves C1 and C2. Are the line integrals of F over C1 and C2 positive, negative, or zero? Explain.

y

x C¡

C™

19–22 Evaluate the line integral yC F  dr, where C is given by the vector function rstd.

19. Fsx, yd − xy2 i 2 x2 j, rstd − t3 i 1 t2 j, 0 < t < 1

20. Fsx, y, zd − sx 1 y2di 1 xz j 1sy 1 zd k, rstd − t2 i 1 t3 j 2 2t k, 0 < t < 2

21. Fsx, y, zd − sin x i 1 cos y j 1 xz k, rstd − t3 i 2 t2 j 1 t k, 0 < t < 1 22. Fsx, y, zd − x i 1 y j 1 xyk,

rstd − cos t i 1 sin t j 1 tk, 0 < t < 

23–26 Use a calculator to evaluate the line integral correct to four decimal places.

23. yC F  dr, where Fsx, yd −sx 1 y i 1syyxd j and rstd − sin2t i 1 sin t cos t j, y6 < t < y3

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

1

(2)

Solution:

SECTION 16.2 LINE INTEGRALS ¤ 641

17. (a) Along the line  = −3, the vectors of F have positive -components, so since the path goes upward, the integrand F · T is always positive. Therefore

1F· r =

1F· T  is positive.

(b) All of the (nonzero) field vectors along the circle with radius 3 are pointed in the clockwise direction, that is, opposite the direction to the path. So F · T is negative, and therefore

2F· r =

2F· T  is negative.

18. Vectors starting on 1point in roughly the same direction as 1, so the tangential component F · T is positive. Then

1F· r =

1F· T  is positive. On the other hand, no vectors starting on 2point in the same direction as 2, while some vectors point in roughly the opposite direction, so we would expect

2F· r =

2F· T  to be negative.

19. r() = 3i+ 2j, so F(r()) = (3)(2)2i− (3)2j= 7i− 6j and r0() = 32i+ 2 j. Then

F· r =1

0 F(r()) · r0()  =1

0(7· 32− 6· 2)  =1

0(39− 27)  =3

10101481

0= 10314 = 201. 20. F(r()) =

2+ (3)2

i+ (2)(−2) j + (3− 2) k = (2+ 6) i − 23j+ (3− 2) k, r0() = 2 i + 32j− 2 k. Then

F· r =2

0 F(r()) · r0()  =2

0(23+ 27− 65− 23+ 4)  =2

0(27− 65+ 4) 

=1

48− 6+ 222

0= 64 − 64 + 8 = 8 21.

F· r =1 0

sin 3 cos(−2) 4

·

32 −2 1



=1

0(32sin 3− 2 cos 2+ 4)  =

− cos 3− sin 2+1551

0= 65− cos 1 − sin 1

22. F(r()) = (2+ 3) i + (3− 2) j + (2)2k= (2+ 3) i + (3− 2) j + 4k, r0() = 2 i + 32j+ 2 k. Then

F· r =1

0 F(r()) · r0()  =1

0(23+ 24+ 35− 34+ 25)  =1

0(55− 4+ 23) 

=5

66155+1241

0= 5615+12 = 1715 23. F(r()) =

sin2 + sin  cos  i +

(sin  cos ) sin2 j=

sin2 + sin  cos  i + cot  j, r0() = 2 sin  cos  i + (cos2 − sin2) j. Then

F· r =3

6 F(r()) · r0()  =3

6

2 sin  cos 

sin2 + sin  cos  + (cot )(cos2 − sin2)



≈ 05424

24. F(r()) = (cos  tan )sin i+ (tan  sin )cos j+ (sin  cos )tan k

= (sin )sin i+ (tan  sin )cos j+ (sin  cos )tan k, r0() = cos  i − sin  j + sec2 k. Then

F· r =4

0 F(r()) · r0()  =4 0

(sin  cos )sin − (tan  sin2)cos + (tan )tan 

 ≈ 08527

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

36. A thin wire has the shape of the first-quadrant part of the circle with center the origin and radius a. If the density function is ρ(x, y) = kxy, find the mass and center of mass of the wire.

Solution:

644 ¤ CHAPTER 16 VECTOR CALCULUS

Therefore 

32  =2

0 (−cos 4)3(−sin 4)2(−) (3√

2 −) 

=2

0 3√

2 −7cos34 sin24  = 5,632,705172,704

2 (1 − −14)

32. (a) We parametrize the circle  as r() = 2 cos  i + 2 sin  j, 0 ≤  ≤ 2. So F(r()) =

4 cos2 4 cos  sin  , r0() = h−2 sin  2 cos i, and  =

F· r =2

0 (−8 cos2 sin  + 8 cos2 sin )  = 0.

(b) From the graph, we see that all of the vectors in the field are perpendicular to the path. This indicates that the field does no work on the particle, since the field never pulls the particle in the direction in which it is going. In other words, at any point along , F · T = 0, and so certainly

F· r = 0 .

33. We use the parametrization  = 2 cos ,  = 2 sin , −2 ≤  ≤ 2. Then

 =



2

+



2

 =

(−2 sin )2+ (2 cos )2 = 2 , so  =

  = 22

−2  = 2(),

 = 21

  = 212

−2(2 cos )2  = 21

4 sin 2

−2 = 4,  = 21

  = 212

−2(2 sin )2  = 0.

Hence ( ) =4

 0.

34. We use the parametrization  =  cos ,  =  sin , 0 ≤  ≤ 2. Then

 =



2

+



2

 =

(− sin )2+ ( cos )2 =  , so

 =

( )  =

  =2

0 ( cos )( sin )   = 32

0 cos  sin   = 31

2sin22

0 = 123,

 = 1

32

()  = 2

3

2 0

( cos )2( sin )  = 2

3 · 4

2 0

cos2 sin  

= 2

13cos32 0 = 2

0 +13

= 23, and

 = 1

32

()  = 2

3

2 0

( cos )( sin )2  = 2

3 · 4

2 0

sin2 cos  

= 21

3sin32

0 = 21 3− 0

= 23.

Therefore the mass is123and the center of mass is ( ) =2 323.

35. (a)  = 1

(  ) ,  = 1

(  ) ,  = 1

(  ) where  =

(  ) .

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

49. (a) Show that a constant force field does zero work on a particle that moves once uniformly around the circle x2+ y2= 1.

(b) Is this also true for a force field F(x) = kx, where k is a constant and x =< x, y >?

Solution:

646 ¤ CHAPTER 16 VECTOR CALCULUS

40. Choosing  as the parameter, the curve  is parametrized by  = 2+ 1,  = , 0 ≤  ≤ 1. Then

 =

F· r =1 0

2+ 12

 2+1

· h2 1i  =1 0

2

2+ 12

+ 2+1



=1

3

2+ 13+122+11

0= 83+1221312 = 12212 + 73 41. r() = h2  1 − i, 0 ≤  ≤ 1.

 =

F· r =1 0

2 − 2  − (1 − )2 1 −  − (2)2

· h2 1 −1i 

=1

0 (4 − 22+  − 1 + 2 − 2− 1 +  + 42)  =1

0 (2+ 8 − 2)  =1

33+ 42− 21 0= 73 42. r() = 2 i +  j + 5 k, 0 ≤  ≤ 1. Therefore

 =

F· r =

1 0

h2  5i

(4 + 262)32 · h0 1 5i  = 

1 0

26

(4 + 262)32 = 

−(4 + 262)−121 0= 

1

2130 .

43. (a) r() = 2i+ 3j ⇒ v() = r0() = 2 i + 32j ⇒ a() = v0() = 2 i + 6 j, and force is mass times acceleration: F() =  a() = 2 i + 6 j.

(b)  =

F· r =1

0(2 i + 6 j) · (2 i + 32j)  =1

0 (42 + 1823) 

=

222+92241

0= 22+922

44. r() =  sin  i +  cos  j +  k ⇒ v() = r0() =  cos  i −  sin  j +  k ⇒ a() = v0() = − sin  i −  cos  j and F() =  a() = − sin  i −  cos  j. Thus

 =

F· r =2

0 (− sin  i −  cos  j) · ( cos  i −  sin  j +  k) 

=2

0 (−2sin  cos  + 2sin  cos )  = (2− 2)1

2sin22

0 = 12(2− 2)

45. The combined weight of the man and the paint is 185 lb, so the force exerted (equal and opposite to that exerted by gravity) is F= 185 k. To parametrize the staircase, let  = 20 cos ,  = 20 sin ,  = 690 =15, 0 ≤  ≤ 6. Then the work done is

 =

F· r =6

0 h0 0 185i ·

−20 sin  20 cos 15

 = (185)156

0  = (185)15

(6) ≈ 167 × 104ft-lb

46. This time  is a function of :  = 185 −69  = 185 −23 . So let F =

185 −23 k. To parametrize the staircase, let  = 20 cos ,  = 20 sin ,  =690 = 15, 0 ≤  ≤ 6. Therefore

 =

F· r =6

0

0 0 185 −23 

·

−20 sin  20 cos 15

 = 156

0

185 − 23 



= 15

185 −4326

0 = 90 185 − 92

≈ 162 × 104ft-lb

47. (a) r() = hcos  sin i, 0 ≤  ≤ 2, and let F = h i. Then

 =

F·  r =2

0 h i · h− sin  cos i  =2

0 (− sin  +  cos )  =

 cos  +  sin 2

0

=  + 0 −  + 0 = 0 (b) Yes. F ( ) =  x = h i and

 =

F·  r =2

0 h cos   sin i · h− sin  cos i  =2

0 (− sin  cos  +  sin  cos )  =2

0 0  = 0.

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

2

參考文獻

相關文件

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience.. Cengage Learning reserves the right to remove additional content

Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require

Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require

Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. All

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience.. Cengage Learning reserves the right to remove additional content

Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require

Since inside E, the integrand is always positive, and clearly, the integrand is negative outside