• 沒有找到結果。

Section 5.2 The Definite Integral

N/A
N/A
Protected

Academic year: 2022

Share "Section 5.2 The Definite Integral"

Copied!
1
0
0

加載中.... (立即查看全文)

全文

(1)

Section 5.2 The Definite Integral

23. Show that the definite integral is equal to lim

n→∞Rn and then evaluate the limit.

Z 4 0

(x − x2)dx, Rn = 4 n

n

X

i=1

 4i n −16i2

n2



Solution:

530 ¤ CHAPTER 5 INTEGRALS 18.2

0−2with  = 5, 10, 50, and 100.

 

5 1077467 0684794 10 0980007 0783670 50 0901705 0862438 100 0891896 0872262

The value of the integral lies between 0872 and 0892. Note that

 () = −2is decreasing on (0 2). We cannot make a similar statement for2

−1−2since  is increasing on (−1 0).

19. On [0 1], lim

→∞

=1

1 + 

∆ =

1 0

1 + .

20. On [2 5], lim

→∞

=1

1 + 3∆ =5 2 √

1 + 3.

21. On [2 7], lim

→∞

=1

[5()3− 4] ∆ =7

2(53− 4) .

22. On [1 3], lim

→∞

=1

()2+ 4∆ =

3 1

2+ 4.

23. For

4

0 ( − 2) , ∆ = 4 − 0

 = 4

, and  = 0 +  ∆ = 4

. Then

4

0 ( − 2)  = lim

→∞

=1

4

4

 = lim

→∞

=1

4

4

2 4

 = lim

→∞

4

=1

4

 −162

2

= lim

→∞.

lim→∞

4

=1

4

 −162

2

= lim

→∞

4

4

=1 − 16

2

=1

2

= lim

→∞

16

2

( + 1)

2 − 64

3

( + 1)(2 + 1) 6

= lim

→∞

8

( + 1) − 32

32( + 1)(2 + 1)

= lim

→∞

 8

 1 +1

− 32 3

 1 + 1



2 + 1



= 8(1) − 32

3(1)(2) = −40 3

24. For 3 1

(3+ 52) , ∆ = 3 − 1

 = 2

, and  = 1 +  ∆ = 1 +2

. Then

3 1

(3+ 52)  = lim

→∞

=1

 1 +2

2

 = lim

→∞

=1



1 +2

3

+ 5

 1 + 2

2 2

= lim

→∞

2

=1



1 +6

 +122

2 +83

3

 +

 5 +20

 +202

2



= lim

→∞

2

=1

 6 +26

 +322

2 + 83

3

= lim

→∞

[continued]

° 2021 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

57. Write as a single integral in the form Rb

af (x)dx:

Z 2

−2

f (x)dx + Z 5

2

f (x)dx − Z −1

−2

f (x)dx Solution:

SECTION 5.2 THE DEFINITE INTEGRAL ¤ 501 37.0

−3

1 +√ 9 − 2

can be interpreted as the area under the graph of

 () = 1 +√

9 − 2between  = −3 and  = 0. This is equal to one-quarter the area of the circle with radius 3, plus the area of the rectangle, so

0

−3

1 +√ 9 − 2

 = 14 · 32+ 1 · 3 = 3 +94.

38.5

−5

 −√

25 − 2

 =5

−5  −5

−5

√25 − 2. By symmetry, the value of the first integral is 0 since the shaded area above the -axis equals the shaded area below the -axis.

The second integral can be interpreted as one half the area of a circle with radius 5; that is, 12(5)2 = 252. Thus, the value of the original integral is 0 −252 = −252.

39.3

−4

12  can be interpreted as the sum of the areas of the two shaded

triangles; that is, 12(4)(2) +12(3)3 2

= 4 +94 = 254.

40.1

0 |2 − 1|  can be interpreted as the sum of the areas of the two shaded triangles; that is, 21

2

1 2

(1) = 12.

41.1 1

√1 + 4 = 0since the limits of integration are equal.

42.0

sin4  = −

0 sin4  [because we reversed the limits of integration]

= −

0 sin4  [we can use any letter without changing the value of the integral]

= −38 [given value]

43.1

0(5 − 62)  =1

0 5  − 61

02 = 5(1 − 0) − 61 3

= 5 − 2 = 3

44.3

1 (2− 1)  = 23

1 −3

1 1  = 2(3− ) − 1(3 − 1) = 23− 2 − 2 45.3

1 + 2 =3

1 · 2 = 23

1 = 2(3− ) = 5− 3 46.2

0 (2 cos  − 5)  =2

0 2 cos   −2

0 5  = 22

0 cos   − 52

0  

= 2(1) − 5(2)2− 02

2 = 2 − 52 8 47.2

−2 ()  +5

2  ()  −−1

−2  ()  =5

−2 ()  +−2

−1  ()  [by Property 5 and reversing limits]

=5

−1 ()  [Property 5]

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

60. FindR5

0 f (x)dx if





3 for x < 3 x for x ≥ 3 Solution:

502 ¤ CHAPTER 5 INTEGRALS 48.4

2  ()  +8

4  ()  =8

2  () , so8

4  ()  =8

2  ()  −4

2  ()  = 73 − 59 = 14.

49.9

0[2 () + 3()]  = 29

0  ()  + 39

0 ()  = 2(37) + 3(16) = 122 50. If () =

3 for   3

 for  ≥ 3, then5

0  () can be interpreted as the area of the shaded region, which consists of a 5-by-3 rectangle surmounted by an isosceles right triangle whose legs have length 2. Thus,5

0  ()  = 5(3) +12(2)(2) = 17.

51.3

0  () is clearly less than −1 and has the smallest value. The slope of the tangent line of  at  = 1, 0(1), has a value between −1 and 0, so it has the next smallest value. The largest value is8

3  () , followed by8

4  () , which has a value about 1 unit less than8

3  () . Still positive, but with a smaller value than8

4  () , is8

0  () . Ordering these quantities from smallest to largest gives us

3

0  ()   0(1) 8

0  ()  8

4  ()  8

3  ()  or B  E  A  D  C 52.  (0) =0

2  ()  = −2

0  () , so  (0) is negative, and similarly, so is  (1).  (3) and  (4) are negative since they represent negatives of areas below the -axis. Since  (2) =2

2  ()  = 0is the only non-negative value, choice C is the largest.

53.  =2

−4[ () + 2 + 5]  =2

−4 ()  + 22

−4  +2

−45  = 1+ 22+ 3

1= −3 [area below -axis] + 3 − 3 = −3

2= −12(4)(4) [area of triangle, see figure] +12(2)(2)

= −8 + 2 = −6

3= 5[2 − (−4)] = 5(6) = 30 Thus,  = −3 + 2(−6) + 30 = 15.

54. Using Integral Comparison Property 8,  ≤ () ≤  ⇒ (2 − 0) ≤2

0  ()  ≤ (2 − 0) ⇒ 2 ≤2

0  ()  ≤ 2.

55. 2− 4 + 4 = ( − 2)2 ≥ 0 on [0 4], so4

0(2− 4 + 4)  ≥ 0 [Property 6].

56. 2≤  on [0 1]  so√

1 + 2≤√

1 + on [0 1]. Hence,1 0

√1 + 2 ≤1 0

√1 +   [Property 7].

57. If −1 ≤  ≤ 1, then 0 ≤ 2 ≤ 1 and 1 ≤ 1 + 2 ≤ 2, so 1 ≤√

1 + 2 ≤√ 2and 1[1 − (−1)] ≤1

−1

√1 + 2 ≤√

2 [1 − (−1)] [Property 8]; that is, 2 ≤1

−1

√1 + 2 ≤ 2√2.

58. If 

6 ≤  ≤  3, then 1

2 ≤ sin  ≤

√3 2

sin is increasing on 

63, so 1

2

  3−

6

≤

3

6 sin   ≤

√3 2

  3− 

6

 [Property 8]; that is,  12 ≤

3

6 sin   ≤

√3  12 .

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

68. Use the properties of integrals to verify the inequality without evaluating the integrals.

π 12 ≤

Z π3

π 6

sin xdx ≤

√3π 12 Solution:

502 ¤ CHAPTER 5 INTEGRALS 48.4

2  ()  +8

4  ()  =8

2  () , so8

4  ()  =8

2  ()  −4

2  ()  = 73 − 59 = 14.

49.9

0[2 () + 3()]  = 29

0  ()  + 39

0 ()  = 2(37) + 3(16) = 122 50. If () =

3 for   3

 for  ≥ 3, then5

0  () can be interpreted as the area of the shaded region, which consists of a 5-by-3 rectangle surmounted by an isosceles right triangle whose legs have length 2. Thus,5

0  ()  = 5(3) +12(2)(2) = 17.

51.3

0  () is clearly less than −1 and has the smallest value. The slope of the tangent line of  at  = 1, 0(1), has a value between −1 and 0, so it has the next smallest value. The largest value is8

3  () , followed by8

4  () , which has a value about 1 unit less than8

3  () . Still positive, but with a smaller value than8

4  () , is8

0  () . Ordering these quantities from smallest to largest gives us

3

0  ()   0(1) 8

0  ()  8

4  ()  8

3  ()  or B  E  A  D  C 52.  (0) =0

2  ()  = −2

0  () , so  (0) is negative, and similarly, so is  (1).  (3) and  (4) are negative since they represent negatives of areas below the -axis. Since  (2) =2

2  ()  = 0is the only non-negative value, choice C is the largest.

53.  =2

−4[ () + 2 + 5]  =2

−4 ()  + 22

−4  +2

−45  = 1+ 22+ 3

1= −3 [area below -axis] + 3 − 3 = −3

2= −12(4)(4) [area of triangle, see figure] + 12(2)(2)

= −8 + 2 = −6

3= 5[2 − (−4)] = 5(6) = 30 Thus,  = −3 + 2(−6) + 30 = 15.

54. Using Integral Comparison Property 8,  ≤ () ≤  ⇒ (2 − 0) ≤2

0  ()  ≤ (2 − 0) ⇒ 2 ≤2

0  ()  ≤ 2.

55. 2− 4 + 4 = ( − 2)2≥ 0 on [0 4], so4

0(2− 4 + 4)  ≥ 0 [Property 6].

56. 2≤  on [0 1]  so√

1 + 2≤√

1 + on [0 1]. Hence,1 0

√1 + 2 ≤1 0

√1 +   [Property 7].

57. If −1 ≤  ≤ 1, then 0 ≤ 2 ≤ 1 and 1 ≤ 1 + 2 ≤ 2, so 1 ≤√

1 + 2 ≤√ 2and 1[1 − (−1)] ≤1

−1

√1 + 2 ≤√

2 [1 − (−1)] [Property 8]; that is, 2 ≤1

−1

√1 + 2 ≤ 2√2.

58. If 

6 ≤  ≤  3, then 1

2 ≤ sin  ≤

√3 2

sin is increasing on 

63, so 1

2

  3 −

6

≤

3

6 sin   ≤

√3 2

  3 −

6

 [Property 8]; that is,  12 ≤

3

6 sin   ≤

√3  12 .

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

1

參考文獻

相關文件

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. Evaluate the surface

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. All

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. By induction, the formula holds for all

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. All

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. All

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. All

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. All

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part..  is periodic with