• 沒有找到結果。

Section 10.2 Calculus with Parametric Curves 18. Find

N/A
N/A
Protected

Academic year: 2022

Share "Section 10.2 Calculus with Parametric Curves 18. Find"

Copied!
2
0
0

加載中.... (立即查看全文)

全文

(1)

Section 10.2 Calculus with Parametric Curves

18. Find dy/dx and d2y/dx2. For which values of t is the curve concave upward?

x = t2+ 1, y = et− 1 Solution:

SECTION 10.2 CALCULUS WITH PARAMETRIC CURVES ¤ 957 16.  = 3+ 1,  = 2−  ⇒ 

 = 

 = 2 − 1 32 = 2

3 − 1 32

2

2 =







 = − 2 32 + 2

33

32 =

2 − 2

33

32 = 2(1 − )

95 . The curve is CU when 2

2  0, that is, when 0    1.

17.  = ,  = − ⇒ 

 = 

 = −−+ −

= −(1 − )

= −2(1 − ) ⇒

2

2 =







 = −2(−1) + (1 − )(−2−2)

= −2(−1 − 2 + 2)

= −3(2 − 3). The curve is CU when

2

2  0, that is, when   32.

18.  = 2+ 1,  = − 1 ⇒ 

 = 

= 

2 ⇒ 2

2 =







 =

2− · 2 (2)2

2 = 2( − 1)

(2)3 = ( − 1) 43 . The curve is CU when 2

2  0, that is, when   0 or   1.

19.  =  − ln ,  =  + ln  [note that   0] ⇒ 

 = 

 = 1 + 1

1 − 1 =  + 1

 − 1 ⇒

2

2 =







 =

( − 1)(1) − ( + 1)(1) ( − 1)2

( − 1) = −2

( − 1)3. The curve is CU when 2

2  0, that is, when 0    1.

20.  = cos ,  = sin 2, 0     ⇒ 

 = 

= 2 cos 2

− sin  ⇒

2

2 =







 =

(− sin )(−4 sin 2) − (2 cos 2)(− cos ) (− sin )2

− sin  = (sin )(8 sin  cos ) + [2(1 − 2 sin2)](cos ) (− sin ) sin2

= (cos )(8 sin2 + 2 − 4 sin2)

(− sin ) sin2 = −cos 

sin  · 4 sin2 + 2

sin2 [ (− cot ) · positive expression]

The curve is CU when 2

2  0, that is, when − cot   0 ⇔ cot   0 ⇔ 2    .

21.  = 3− 3,  = 2− 3. 

 = 2, so

 = 0 ⇔  = 0 ⇔ ( ) = (0 −3). 

 = 32− 3 = 3( + 1)( − 1), so 

 = 0 ⇔

 = −1 or 1 ⇔ ( ) = (2 −2) or (−2 −2). The curve has a horizontal tangent at (0 −3) and vertical tangents at (2 −2) and (−2 −2).

° 2021 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

31. (a) Find the slope of the tangent line to the trochoid x = rθ − d sin θ, y = r − d cos θ in terms of θ. (See Exercise 10.1.49.)

(b) Show that if d < r, then the trochoid does not have a vertical tangent.

Solution:

884 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

 = 2(22− 3 − 2) = 0 ⇔ 2(2 + 1)( − 2) = 0 ⇔  = 0, −12 or 2. It seems that we have missed one vertical tangent, and indeed if we plot the curve on the -interval [−12 22] we see that there is another vertical tangent at (−8 6).

24. We graph the curve  = 4+ 43− 82,  = 22−  in the viewing rectangle [−37 02] by [−02 14]. It appears that there is a horizontal tangent at about (−04 −01), and vertical tangents at about (−3 1) and (0 0).

We calculate

 = 

 = 4 − 1

43+ 122− 16, so there is a horizontal tangent where  = 4 − 1 = 0 ⇔  = 14. This point (the lowest point) is shown in the first graph. There are vertical tangents where  = 43+ 122− 16 = 0 ⇔ 4(2+ 3 − 4) = 0 ⇔ 4( + 4)( − 1) = 0. We have missed one vertical tangent corresponding to  = −4, and if we plot the graph for  ∈ [−5 3], we see that the curve has another vertical tangent line at approximately (−128 36).

25.  = cos ,  = sin  cos .  = − sin ,

 = − sin2 + cos2 = cos 2. ( ) = (0 0) ⇔ cos  = 0 ⇔  is an odd multiple of2. When  = 2,  = −1 and  = −1, so  = 1.

When  =32 ,  = 1 and  = −1. So  = −1. Thus,  =  and

 = − are both tangent to the curve at (0 0).

26.  = −2 cos ,  = sin  + sin 2. From the graph, it appears that the curve crosses itself at the point (1 0). If this is true, then  = 1 ⇔

−2 cos  = 1 ⇔ cos  = −12 ⇔  = 23 or 43 for 0 ≤  ≤ 2.

Substituting either value of  into  gives  = 0, confirming that (1 0) is the point where the curve crosses itself. 

 = 

= cos  + 2 cos 2

2 sin  . When  = 2

3 ,

 = −12 + 2(−12) 2(√

32) = −32

√3 = −

√3

2 , so an equation of the tangent line is  − 0 = −

√3

2 ( − 1), or  = −

√3 2  +

√3

2 . Similarly, when  = 4

3 , an equation of the tangent line is  =

√3 2  −

√3 2 . 27.  =  −  sin ,  =  −  cos .

(a) 

 =  −  cos ,

 =  sin , so 

 =  sin 

 −  cos .

(b) If 0    , then | cos | ≤   , so  −  cos  ≥  −   0. This shows that  never vanishes, so the trochoid can have no vertical tangent if   .

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

38. Find the area enclosed by the given parametric curve and the y-axis.

the x-axis.

35-36 Find the area enclosed by the given parametric curve and

35. x = t3 + 1, y = 2t - t2

y

36. x = sin t, y = sin t cos t, 0 t π/2

y

x

the y-axis.

37-38 Find the area enclosed by the given parametric curve and

37. x = sin弓,

y = cos t y

38. x = t2 - 2t y =

Ji

y

X

39. Use the parametric equations of an ellipse, x = αcos

e

,

y = b sin

e

, 0 '"三三三 27T, to find the area that it encloses.

40. Find the area of the region enclosed by the loop of the curve x = 1 - t2, Y = t - t3

y

1 x

SECTION 10.2 仁alculuswith Parametric Curves 681

41. Find the area under one arch of the trochoid of Exer- cise 10.1.49 for the case d < r.

42. Let q]t be the region enclosed by the loop of the curve in Example 1.

(a) Find the area of q]t.

(b) If q]t is rotated about the x-axis, find the volume of the resulting solid.

(c) Find the centroid of q]t.

固的-46 Set up an integral 伽trepresents the length of the part of the parametric curve shown in the graph. Then use a calculator (or computer) to find the length co叮ectto four decimal places.

43. x = 3t2 y = t2 - 2t

2

44. x = t + e y = t2 + t

y 6

x

2

-A

AU

x

45. x = t - 2 sin t, y = 1 - 2 cos t, 0 '"三 I 47T

y

x Solution:

SECTION 10.2 CALCULUS WITH PARAMETRIC CURVES ¤ 961

3− 3 + 2 = 0 ⇔ ( − 1)2( + 2) = 0 ⇔  = 1 or −2. Hence, the desired equations are  − 3 =  − 4, or

 =  − 1, tangent to the curve at (4 3), and  − (−15) = −2( − 13), or  = −2 + 11, tangent to the curve at (13 −15).

35. The curve  = 3+ 1,  = 2 − 2= (2 − ) intersects the ­axis when  = 0, that is, when  = 0 and  = 2. The corresponding values of  are 1 and 9. The shaded area is given by

=9

=1

(− )  =

=2

=0 [() − 0] 0()  =

2

0 (2 − 2)(32) 

= 32

0(23− 4)  = 3

1

241552 0= 3

8 −325

= 245

36. The curve  = sin ,  = sin  cos , 0 ≤  ≤ 2 intersects the ­axis when  = 0, that is, when  = 0 and  = 2.

The corresponding values of  are 0 and 1, so the area enclosed by the curve and the ­axis is given by

=1

=0

  =

=2

=0

() 0()  =

2 0

sin  cos  (cos ) = −c

0 1

2 =1

331 0= 13

37. The curve  = sin2,  = cos  intersects the ­axis when  = 0, that is, when  = 0 and  = . (Any integer multiple of  will result in  = 0, though we choose two values of  over which the curve is traced out once.) The corresponding values of  are 1 and −1, so the area enclosed by the curve and the ­axis is given by

=1

=−1

  =

=0

=

() 0()  =

0

sin2 (−sin )  =

0

sin3 =67

−1

3(2 + sin2) cos 

0

= 23−

23

= 43

38. The curve  = 2− 2 = ( − 2),  =√

intersects the ­axis when  = 0, that is, when

 = 0and  = 2. The corresponding values of  are 0 and√2. The shaded area is given by

= 2

=0

(− )  =

=2

=0 [0 − ()] 0()  = −

2 0

(2− 2)

 1 2√



= −2 0

1

232− 12

 = −1

55223322 0

= −

1

5· 25223 · 232

= −2124 543

= −√ 2

158

= 158 √ 2

39.  =  cos ,  =  sin , 0 ≤  ≤ 2. By symmetry of the ellipse about the ­ and ­axes,

 = 4

=

=0

  = 4

=0

=2 sin  (− sin )  = 42

0 sin2  = 42 0

1

2(1 − cos 2) 

= 2

 −12sin 22

0 = 2

2

= 

40. By symmetry, the area of the shaded region is twice the area of the shaded portion above the ­axis. The top half of the loop is described by  = 1 − 2,  =  − 3= (1 − )(1 + ), 0 ≤  ≤ 1 with ­intercepts 0 and 1 corresponding to  = 1 and

 = 0, respectively. Thus, the area of the shaded region is 21

0   = 20

1 () 0()  = 20

1( − 3)(−2)  = 41

0(2− 4)  = 41

331551 0 = 41

315

= 158.

° 2021 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

1

(2)

50. Find the exact length of the curve.

x = 3 cos t − cos 3t, y = 3 sin t − sin 3t, 0 ≤ t ≤ π Solution:

SECTION 10.2 CALCULUS WITH PARAMETRIC CURVES ¤ 963

45.  =  − 2 sin ,  = 1 − 2 cos , 0 ≤  ≤ 4.  = 1 − 2 cos  and  = 2 sin , so

()2+ ()2= (1 − 2 cos )2+ (2 sin )2= 1 − 4 cos  + 4 cos2 + 4 sin2 = 5 − 4 cos . Thus,

 =

()2+ ()2 =4

0

√5 − 4 cos    267298.

46.  =  cos ,  =  − 5 sin .  = cos  −  sin  and  = 1 − 5 cos , so

()2+ ()2= (cos  −  sin )2+ (1 − 5 cos )2. Observe that when  = −, ( ) = ( −) and when  = , ( ) = (− ). Thus,  =

()2+ ()2 =

−

(cos  −  sin )2+ (1 − 5 cos )2  228546.

47.  = 233,  = 2− 2, 0 ≤  ≤ 3.  = 22and  = 2, so ()2+ ()2 = 44+ 42 = 42(2+ 1).

Thus,

 =

()2+ ()2 =

3 0

42(2+ 1)  =

3 0

2

2+ 1 

=

10 1

√  [ = 2+ 1  = 2 ] =2

33210

1 = 23(1032− 1) = 23

10√ 10 − 1

48.  = − ,  = 42, 0 ≤  ≤ 2.  = − 1 and  = 22, so

()2+ ()2= (− 1)2+ (22)2= 2− 2+ 1 + 4= 2+ 2+ 1 = (+ 1)2. Thus,

 =

2 0

(+ 1)2 =

2 0

+ 1  = 2 0

(+ 1)  =

+ 2

0= (2+ 2) − (1 + 0) = 2+ 1.

49.  =  sin ,  =  cos , 0 ≤  ≤ 1. 

 =  cos  + sin and

 = − sin  + cos , so





2

+





2

= 2cos2 + 2 sin  cos  + sin2 + 2sin2 − 2 sin  cos  + cos2

= 2(cos2 + sin2) + sin2 + cos2 = 2+ 1.

Thus,  =1 0

√2+ 1 =211 2√

2+ 1 +12ln

 +√

2+ 11

0= 12

2 +12ln 1 +√

2.

50.  = 3 cos  − cos 3,  = 3 sin  − sin 3, 0 ≤  ≤ . 

 = −3 sin  + 3 sin 3 and 

 = 3 cos  − 3 cos 3, so





2

+





2

= 9 sin2 − 18 sin  sin 3 + 9 sin23 + 9 cos2 − 18 cos  cos 3 + 9 cos23

= 9(cos2 + sin2) − 18(cos  cos 3 + sin  sin 3) + 9(cos23 + sin23)

= 9(1) − 18 cos( − 3) + 9(1) = 18 − 18 cos(−2) = 18(1 − cos 2)

= 18[1 − (1 − 2 sin2)] = 36 sin2.

Thus,  = 0

√36 sin2  = 6

0 |sin |  = 6

0 sin   = −6 cos 

0 = −6 (−1 − 1) = 12.

° 2021 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

73. Find the exact area of the surface obtained by rotating the given curve about the x-axis.

x = a cos3θ, y = a sin3θ, 0 ≤ θ ≤π 2 Solution:

SECTION 10.2 CALCULUS WITH PARAMETRIC CURVES ¤ 891 62.  = 22+ 1,  = 8√

, 1 ≤  ≤ 3.





2

+





2

=

 4 − 1

2

2

+

 4

√

2

= 162−8

 + 1

4 +16

 = 162+8

 + 1

4 =

 4 + 1

2

2

.

 =

3 1

2



2 +



2

 =

3 1

2 8√



4 + 1

2

2

 = 16

3 1

12(4 + −2) 

= 16

3 1

(432+ −32)  = 16

8

552− 2−123

1= 16

72 5

√3 −23

√3

− (85 − 2)

= 16206

15

√3 +156

= 3215 103√

3 + 3 63.  =  cos3,  =  sin3, 0 ≤  ≤ 2. 



2

+



2

= (−3 cos2 sin )2+ (3 sin2 cos )2= 92sin2 cos2.

 =2

0 2 ·  sin3 · 3 sin  cos   = 622

0 sin4 cos   = 652

sin52

0 = 652 64.  = 2 cos  − cos 2,  = 2 sin  − sin 2 ⇒





2

+



2

= (−2 sin  + 2 sin 2)2+ (2 cos  − 2 cos 2)2

= 4[(sin2 − 2 sin  sin 2 + sin22) + (cos2 − 2 cos  cos 2 + cos22)]

= 4[1 + 1 − 2(cos 2 cos  + sin 2 sin )] = 8[1 − cos(2 − )] = 8(1 − cos ) We plot the graph with parameter interval [0 2], and see that we should only integrate

between 0 and . (If the interval [0 2] were taken, the surface of revolution would be generated twice.) Also note that  = 2 sin  − sin 2 = 2 sin (1 − cos ). So

 =

0 2 · 2 sin (1 − cos ) 2√ 2√

1 − cos  

= 8√ 2

0 (1 − cos )32sin   = 8√ 22

0

√3

 = 1− cos 

 = sin  

= 8√ 22

5

522 0= 165

2(252) = 1285

65.  = 32,  = 23, 0 ≤  ≤ 5 ⇒ 



2

+



2

= (6)2+ (62)2= 362(1 + 2) ⇒

 =5 0 2

()2+ ()2 =5

0 2(32)6√

1 + 2 = 185 02

1 + 22 

= 1826

1 ( − 1)√ 

 = 1 + 2

 = 2 

= 1826

1 (32− 12)  = 18

2

552233226 1

= 182

5· 676√

26 −23· 26√ 26

−2 523

= 245  949√

26 + 1 66.  = − ,  = 42, 0 ≤  ≤ 1. 



2 +



2

= (− 1)2+ (22)2= 2+ 2+ 1 = (+ 1)2.

 =1

0 2(− )

(− 1)2+ (22)2 =1

0 2(− )(+ 1)

= 21

22+ − ( − 1)1221

0= (2+ 2 − 6)

67. If 0is continuous and 0() 6= 0 for  ≤  ≤ , then either 0()  0for all  in [ ] or 0()  0for all  in [ ]. Thus,  is monotonic (in fact, strictly increasing or strictly decreasing) on [ ]. It follows that  has an inverse. Set  =  ◦ −1, that is, define  by  () = (−1()). Then  = () ⇒ −1() = , so  = () = (−1()) =  ().

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

2

參考文獻

相關文件

An open-top box with a square base and two perpendicular dividers, as shown in the diagram, is to have a volume of 288 cubic inches7. Use Lagrange multipliers to find the

Determine how much money the company should spend on newspaper advertising and on television advertising per month to maximize its monthly

(12%) Among all planes that are tangent to the surface x 2 yz = 1, are there the ones that are nearest or farthest from the origin?. Find such tangent planes if

[r]

If a and b are fixed numbers, find parametric equations for the curve that consists of all possible positions of the point P in the figure, using the angle  as the parameter.. If

The first equation gives  = −1, but this does not satisfy the other equations, so the particles do not collide.. All

Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require

To find the osculating plane, we first calculate the unit tangent and normal vectors.. In Maple, we use the VectorCalculus package and set