一維薛丁格方程第n 特徵值的震盪性

全文

(1)

東吳大學數學系碩士班碩士論文 指導教授:朱啟平 教授

一維薛丁格方程第 n 特徵值的震盪性

Oscillation of the n-th eigenvalue of one-dimensional Schrödinger equation

(2)
(3)

誌謝(acknowledgment)

   

        完成論文,首先誠摯的感謝我的指導教授朱啟平教授,

在她的細心教導之下,讓我探索到數學某些地方的奧妙之處,

受益良多。也要感謝我的口試委員林惠婷教授跟謝忠村教授 在百忙之中撥出時間來給予指導。 

        接下來要感謝  潘宗驛、王伶云、楊世揚助教協助我電腦 軟體的應用,讓我能夠用程式得心應手的輔助我的論文。 

        最後我想感謝系上所有教授以及秘書,謝謝你們這幾年 的教導及協助。 

謝謝碩士班的  連祥昀、藍苡甄、陳玉堂、徐莉萍、郭爵豪、

吳世權、葉又菁  同學的鼓勵以及協助下,讓我能夠順利的畢 業。 

       

(4)

摘要

        使用阿達瑪微分公式的手法來研究薛丁格方程第 n 特徵 值節點與頂點的位置與附近的震盪性。 

                                 

(5)

Abstract 

Using the method of Hadamard differential formula to investigate the position and the concussion of the nth eigenvalue node and vertex of the Schödinger equation.

                           

(6)

目錄(Table of Contents)

章節 標題 頁次

摘要 i

第一章    緒論(Indroction)      1 

第二章    前文(Preliminaries)      2 

第三章    主要結果(Main Results)      4 

第四章    例子(Example)      10 

        參考文獻(References)      16 

(7)

1 Introduction

We consider Schr¨odinger equation

φ00(x) − V (x)φ(x) + λ(x)φ(x) = 0, x ∈ (−π 2,π

2) (1)

with φ(−π2) = φ(π2) = 0, where V (x) ≥ 0 is the potential function. It is well- known (see[KZ]) that the Schr¨odinger operator H = −∆+V (x) acting on L2(Ω) with Dirichlet boundary conditions has purely discrete spectrum if Ω is a smooth bounded domain in <d. To specify the role of V (x), denote the nth Dirichlet eigenvalue of (1) by λn(V ) and let φVn(x) be the corresponding eigenfunction.

The potentials we interested are ”rectangular barriers” as following:

V := VA=

0 x ∈(−π2, A)

π

2−A x ∈[A,π2],

that is , VAis supported on [A,π2] with constant height, as well as Rπ2

π2

V = 2π.

In quantum mechanics, the rectangular barrier is a standard one-dimensional problem that demonstrates the phenomenon of wave-mechanical tunneling (i.e quantum tunneling) and wave mechanical reflection (see wiki/rectangular po- tential barrier). Since V ≥ 0, the eigenvalues are simple and λ1(V ) > 0, φVn has exactly (n-1) nodal points (see[KZ]). The eigenvalues list in ascending order are:

0 < λ1(V ) < λ2(V ) < λ3(V ) < λ4(V ) < ...

In this article, we are going to investigate how λn(VA) being varied with respect to A.

(8)

2 Preliminaries

For later usage, preliminarily we consider for κ > 0, n > 0, x ∈ [−π2,π2],

F(x, κ, n) = πκ2(2x − π)2−(2x + π)2[(n − κ)2π+ π − 2x]. (2)

Lemma 1.

Fκ(x, κ, n) > 0, for x ∈ (−π2,π2), n − κ ≥ 0

Fx(x, κ, n) < 0, for x ∈ (−π2,π2) , n − κ ≥ 1

Fn(x, κ, n) < 0, for x ∈ (−π2,π2), n − κ > 0

[Proof ]

Direct computing shows that for x ∈ (−π2,π2) Fn= −2(2x + π)2(n − κ)π < 0 , if n − κ > 0

Fκ= 2πκ(2x − π)2+ 2(2x + π)2(n − κ)π > 0 , if n − κ ≥ 0.

Fx= 4πκ2(2x − π) − 4(2x + π)[(n − κ)2π+ π − 2x] + 2(2x + π)2

= 4πκ2(2x − π) − (2x + π)[4(n − κ)2π+ 4π − 8x − 2(2x + π)]

= 4πκ2(2x−π)−(2x+π)[4(n−κ)2π −12x+2π]

(3) If n − κ ≥ 1 , from (3), we have for x ∈ (−π2,π2),

Fx(x, κ) ≤ 4πκ2(2x − π) − (2x + π)[6π − 12x]

= (2x − π)[4πκ2+ 6(2x + π)] < 0 

(9)

Lemma 2.

Fx(x, κ, n) < 0 , for x ∈ (−π2,π22nπ), 12 ≤ n − κ <1

[Proof.] from (3), we have

−Fx(x, κ, n) = (2x + π)[4(n − κ)2π −12x + 2π] + 4πκ2(π − 2x)

For fixed n ≥ 1, if (n − 1) < κ ≤ (n −12), (that is, 12 ≤ n − κ <1), then

−Fx(x, κ, n) > (2x + π)(3π − 12x) + 4π(n − 1)2(π − 2x)

= 3(2x + π)(π − 4x) + 4π(n − 1)2(π − 2x)

:= g(x)

We see that g(x) is a concave downward quadratic function, direct comput- ing shows that

g(−π2) = 8π2(n − 1)2≥0, also

g(π22nπ) = 3π2(2 − 1n)(n2 −1) + 4π2 (n−1)

2

n ,

=πn22(4n3−14n2+ 19n − 6).

Let h(n) = 4n3−14n2+ 19n − 6, then h0(n) = 12n2−28n + 19 > 0, ∀n.

So h(1) = 3 > 0 reveals that h(n) > 0, accordingly g(π22nπ) > 0 for all n ≥ 1.

We see that g(x) > 0, that is Fx<0 ,∀x ∈ (−π2,π22nπ). 

(10)

3 Main results

In the following , first we shall study the variation of λn(VA) w.r.t A, specifically around those A’s that coincide with the zeros or peaks of φVnA(x).

3.1 A := A

kn

is the k-th zero of φ

VnA

(x)

fig 1.

Suppose A is the k-th zero of φVnA(x), n ≥ 2, 1 ≤ k ≤ n − 1. For convenience we denote φVnA , λVnA by φkn , λkn in this subsection .Then φkn is the k-th Dirichlet eigenfunction of φ00(x) + λφ = 0 in (−π2, A), as well as the (n − k)th Dirichlet eigenfunction of φ00(x) + (λ − VA)φ(x) = 0 in (A,π2). That is,

(11)









φkn00(x) + λknφkn(x) = 0, x ∈ (−π2, A),

φkn(−π2) = φkn(A) = 0,

(4)

where λkn is the k-th eigenvalue of (4);

and









φkn00(x) + (λknπ

2−Akn(x) = 0, x ∈ (A,π2), φkn(A) = φkn(π2) = 0,

(5)

where λknπ

2−A is the (n − k)th eigenvalue of (5).

From (4) we know that λkn= (kπ)

2

(π2+A)2,

from (5) we know that λkn= [(n−k)π](π 2 2−A)2 + π

2−A. Hence (π(kπ)2

2+A)2 = [(n−k)π]

2+2π(π2−A)

(π2−A)2 , that is, A must satisfy

π2k2(π − 2A)2= (π + 2A)2[(n − k)2π2+ π2−2Aπ]

Proposition 1 For n ≥ 2, 1 ≤ k ≤ n − 1,

(i)Suppose Akn = A is the kth-zero of φVnA(x), x ∈ [−π2,π2], then F (Akn, k, n) = 0 (ii)For fixed n,k, there is exactly one root of F (x, k, n) = 0 in (−π2,π2), and Akn is well-defined.

[Proof ]

(12)

3.2 A := A

kn12

is the k-th peak of φ

n

(x)

fig 2.

Suppose A is the k-th peak of φVnA(x) n ≥ 1, 1 ≤ k ≤ n, Denote φVnA, λn(VA) by ψnk, ηknfor convenience in this subsection, then ψnk is k-th Dirichlet-Neumann eigenfunction of φ00+ λφ = 0 in (−π2, A) as well as the (n − k + 1)th Neumann- Dirichlet eigenfunction of φ00(x) + (λ − VA)φ(x) = 0 in (A,π2). That is,

ψkn00(x) + ηknψnk(x) = 0 , x ∈(−π2, A)

ψkn(−π2) = 0, ψkn0(A) = 0 (6)

where ηnk is the kth eigenvalue of (6);

ψkn00+ (ηknπ

2−Akn(x) = 0, x ∈ (A,π2)

ψkn0(A) = 0, ψkn(π2) = 0. (7)

where ηnkπ

2−A is the (n − k + 1)th eigenvalue of (7).

From (6), we know that ηkn= (k−

1 2)2π2 (A+π2)2 ,

from (7), we know that ηnk = (n−k+

1 2)2π2 (π2−A)2 + π

2−A. Just replace k by k − 12 in proposition 1, we have

(13)

As in proposition 1, Ak−

1

n 2 is welldefined , and we have Proposition 2.

(i) For n ≥ 1, 1 ≤ k ≤ n, suppose Ak−

1 2

n = A is the kth peak of φVnA(x), x ∈(−π2,π2), then F (Ak−

1 2

n , k −12, n) = 0

(ii) An−

1

n 2 < π2π

2n

[proof ]

We need only to prove (ii). Since φ

V

An−1 n 2

n is the 1st Neumann-Dirichlet eigen- function of φ00+ (λ − V

An−

1 2 n

)φ in [An−

1

n 2,π2] , to get the nontrivial solution φ, we see that λ−V

An−

1 n 2

>0, and there is only one ”41wave” of φ

V

An−1 n 2

n

on [An−

1 2

n ,π2]. On the other hand, φ

V

An−1 n 2

n is the nth Dirichlet-Neumann eigen- function of φ00+ λφ = 0 in [−π2, An−

1 2

n ], there are totally (2n-1) ”14 waves” of φ

V

An−1 n 2

n in (−π2, An−

1

n 2) . Since 0 < λ − V

An−

1 n 2

< λ, the length of ”14 wave” in [An−

1

n 2,π2] is larger than that in [−π2, An−

1

n 2]. That is

π 2 − An−

1

n 2 >An−

1

n 2 +π2 (2n − 1)

So

(2n − 1)(π

2 − An−12) > An−

1

n 2 +π 2

and

(14)

π 2 − π

2n= π(n − 1) 2n > An−

1

n 2

and we complete the proof of (ii) 

Theorem 1. For n ≥ 1, km= m2, m= 1, 2, 3..., (2n − 1),

Aknm is increasing with respect to m and is decreasing w.r.t n. That is,

A

1

n2 < A1n < A

3

n2 < A2n < ... as well as A

1 2

1 > A

1 2

2 > ... > A

1

n2 > ...etc.

[Proof.]

From propositions 1,2, for fixed n, we know that Aknm is the root of

F(x, km, n) = 0 with n − km12, n ≥1, m = 1, 2, ..., (2n − 1)and F (x, κ, n) is strictly decreasing in (−π2,π2), therefore for x ∈ (−π2,π2).

F(x,κ,n)=0 can be represented as F (x(κ), κ, n) = 0 for fixed n and

F(x(n), κ, n) = 0, for fixed κ. From Lemmas 1,2 and implicit differentiation, for fixed n, we have dx = −FFκx >0 , if n − κ ≥ 1 ,x ∈ (−π2,π2), or if

1

2 ≤ n − κ <1, x ∈ (−π2,π22nπ). Observe that Aknm ∈(−π2,π2),

n − km ≥ 1, if m = 1, 2, ..., (2n − 2); also from proposition 2(ii), Aknm ∈ (−π2,π22nπ), n − km=12, if m= 2n − 1, therefore Aknm is increasing w.r.t. m . On the other hand , for fixed κ, we have dxdn= −FFnx <0, so Aκnm is decreasing w.r.t. n. 

(15)

3.3 The variation of λ

n

(V

A

) w.r.t. A at A

κn

, κ = k or k −

12

Below we shall use Hadamard differentiation formula, we formulate them ac- cording to our situation in the following.

Theorem A. [ref. (H, Theorem 2.5.11)] Suppose V, V are rectangular barriers with supp(V )=[A , L] where V has height τ > 0 on supp V ; supp(V)=[A,L]

V has height τ () := τL−A(L−A) on supp V.

Suppose τ ()is smooth with respect to , andRL

−Lφ2n,Vdx= 1, then

λ0n(0) := lim

→0

λn(V) − λn(V )

 = τ0(0)(L − A)[

RL

Aφ2n,V(x)dx

L − A − φ2n,V(A)] (8)

Theorem 2.

λn(VA) is increasing w.r.t. A around A = Aκn, k = 1, 2, ..., n − 1

λn(VA) is decreasing w.r.t. A around A = Aκ−

1

n 2, k = 1, 2, ..., n

[Proof ]

Assume A > A for  > 0 , then τ = π

2−A > π

2−A = τ (0) for  > 0, so τ0(0) > 0 in (8). When V = VAkn , A = Akn is a zero of φn,VAk

n, from (8), we have λ0n>0 at V = VAkn. When V = V

Ak−

1 2 n

, A= Ak−

1

n 2 is a peak of φn,V

Ak−1/2 n

, from (8) , we have λ0n <0 at V = VAk−1/2

n . That is , the nth Dirichlet eigen- value of (1) will increase w.r.t. A around A = Akn , and will decrease around A= AAk−1/2

n . 

(16)

4 Examples

4.1 Example for Theorem 1.

Recall F (x, κ, n) = πκ2(2x − π)2−(2x + π)2[(n − κ)2π+ π − 2x] , x ∈[−π2,π2], κ > 0 , n > 0

(1) A

1 2

1 is the root of F (x,12,1) = π4(2x − π)2−(2x + π)2[54π −2x] = 0

A

1 2

1 ≈ −0.69907; from equation (6), we also know that

λ

1 2

1 = (

1 2π)2 (π2+A

1 2 1)2

≈3.24698

(2) A

1 2

2 is the root of F (x,12,2) = π4(2x − π)2−(2x + π)2[134π −2x] = 0

A

1 2

2 ≈ −0.932392; from equation (6), we also know that

λ

1 2

2 = (

3 2π)2 (π2+A

1 2 2)2

≈6.05408

(3) A

1 2

3 is the root of F (x,12,3) = π4(2x − π)2−(2x + π)2[(294)π − 2x] = 0

A

1 2

3 ≈ −1.09757; from equation (6), we also know that

λ

1 2

3 = (

5 2π)2 (π2+A

1 2 3)2

≈11.018

We see : A

1 2

1 > A

1 2

2 > A

1 2

3 (see figure 3.)

(17)

figure 3.

On the other hand,

(4) A

1 2

3 is the root of F (x,12,3) = π4(2x − π)2−(2x + π)2[(294)π − 2x] = 0

A

1 2

3 ≈ −1.09757; from equation (6), we also know that

1

= (

1π)2

11.018

(18)

(5) A13 is the root of F (x, 1, 3) = π(2x − π)2−(2x + π)2[5π − 2x] = 0

A13≈ −0.625503; from equation (4), we also know that

λ13= (π π2

2+A13)2 ≈11.045 (6) A

3 2

3 is the root of F (x,32,3) = 4(2x − π)2−(2x + π)2[134π −2x] = 0

A

3 2

3 ≈ −0.155689; from equation (6), we also know that

λ

3 2

3 = (

3 2π)2 (π2+A

3 2 3)2

≈11.0893

(7) A23 is the root of F (x, 2, 3) = 4π(2x − π)2−(2x + π)2[2π − 2x] = 0

A23≈0.308752; from (4), we also know that

λ23= (π(2π)2

2+A23)2 ≈11.1751 (8) A

5 2

3 is the root of F (x,52,3) = 254π(2x − π)2−(2x + π)2[54π −2x] = 0

A

5 2

3 ≈0.754791; from equation (6), we also know that

λ

5 2

3 = (

5 2π)2 (π2+A

5 2 3)2

≈11.4055

We see : A

1 2

3 < A13< A

3 2

3 < A23< A

5 2

3

(19)

4.2 Examples for Theorem2

(1) A = A

1 2

3 = −1.09757,

λ

1 2

3 := λ

1 2

3(VA) = (

1 2π)2

(π2+A)2 ≈11.018

Numerically:(by matlab)

Al= −1.09955 < A

1 2

3, λ3(VA) = 11.0320 > λ

1 2

3

Ar= −1.07337 > A

1 2

3, λ3(VA) = 11.0096 < λ

1 2

3,

we see λ3is decreasing around A = A

1 2

3

(2) A = A13= −0.625503,

λ13:= λ13(VA) =(ππ2

2+A)2 ≈11.045 Numerically:(by matlab)

Al= −0.62831 < A13, λ3(VA) = 11.0322 < λ13

Ar= −0.60213 > A13, λ3(VA) = 11.0622 > λ13,

(20)

(3) A = A

3 2

3 = −0.155689,

λ

3 2

3 := λ

3 2

3(VA) = (

3 2π)2

(π2+A)2 ≈11.0893

Numerically:(by matlab)

Al= −0.15707 < A

3 2

3, λ3(VA) = 11.1127 > λ

3 2

3

Ar= −0.13089 > A

3 2

3, λ3(VA) = 11.0847 < λ

3 2

3,

we see λ3is decreasing around A = A

3 2

3

(4) A = A23= 0.308752,

λ23:= λ23(VA) =(π(2π)2

2+A)2 ≈11.1751 Numerically:(by matlab)

Al= 0.28797 < A23, λ3(VA) = 11.1228 < λ23

Ar= 0.31415 > A23, λ3(VA) = 11.1824 > λ13,

we see λ3is increasing around A = A23

(21)

(5) A = A

5 2

3 = 0.754791,

λ

5 2

3 := λ

5 2

3(VA) = (

5π 2)2

(π2+A)2 ≈11.4055

Numerically:(by matlab)

Al= 0.73303 < A

5 2

3, λ3(VA) = 11.5118 > λ

5 2

3

Ar= 0.78539 > A

3 2

3, λ3(VA) = 11.3845 < λ

5 2

3

we see λ3is decreasing around A = A

5 2

3

(22)

References

[KZ] Kong,Q. and Zettl,A. , Eigenfunctions of regular Stum-Liouville problems, J.D.E. —3—(1996), 1-19

[H] Henrot,A., Extreme problems for eigenvalues of elliptic operators, Front.Math., Birh¨auser Verlag, Basel, 2006

數據

Updating...

參考文獻

Updating...

相關主題 :