• 沒有找到結果。

Supporting Information for: Impact of Metal and Anion Substitutions on the Hydrogen Storage Properties of M-BTT Metal-Organic Frameworks

N/A
N/A
Protected

Academic year: 2022

Share "Supporting Information for: Impact of Metal and Anion Substitutions on the Hydrogen Storage Properties of M-BTT Metal-Organic Frameworks"

Copied!
11
0
0

加載中.... (立即查看全文)

全文

(1)

S-1

Supporting Information for:

Impact of Metal and Anion Substitutions on the Hydrogen Storage Properties of M-BTT Metal-Organic Frameworks

Kenji Sumida, David Stück, Lorenzo Mino, Jeng-Da Chai, Olena Zavorotynska, Eric D.

Bloch, Leslie J. Murray, Mircea Dincă, Sachin Chavan, Silvia Bordiga,*,‡

Martin Head-Gordon*,†,¶ and Jeffrey R. Long*,†,§

Department of Chemistry, University of California Berkeley, California 94720, United States

Department of Chemistry, NIS Centre of Excellence and INSTM, University of Torino, Via Quarello, 11 I-10135 Torino, Italy

Chemical Sciences Division and §Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States

*email: silvia.bordiga@unito.it, mhg@cchem.berkeley.edu, jrlong@berkeley.edu

J. Am. Chem. Soc.

(2)

S-2 List of Figures

Figure S1. Infrared spectra for H2 desorption recorded at 14 K for Mn-BTT.

Figure S2. Infrared spectra for H2 desorption recorded at 14 K for Fe-BTT.

Figure S3. Infrared spectra for H2 desorption recorded at 14 K for Cu-BTT.

Figure S4. H2 adsorption isotherms for Mn-BTT collected at 77 K and 87 K.

Figure S5. H2 adsorption isotherms for Fe-BTT collected at 77 K and 87 K.

Figure S6. H2 adsorption isotherms for Cu-BTT collected at 77 K and 87 K.

Figure S7. The lowest-pressure region of the H2 adsorption isotherm for Fe-BTT collected at 77 K.

Table S1. Dual-site Langmuir fit parameters for the H2 isotherms for Mn-BTT in Figure S4.

Table S2. Dual-site Langmuir fit parameters for the H2 isotherms for Fe-BTT in Figure S5.

Table S3. Dual-site Langmuir fit parameters for the H2 isotherms for Cu-BTT in Figure S6.

Table S4. Dual-site Langmuir fit parameters for the lowest-pressure region of the Hadsorption data for Fe-BTT in Figure S7.

Complete citation for Reference 25:

Shao, Y.; Fusti Molnar, L.; Jung, Y.; Kussmann, J.; Ochsenfeld, C.; Brown, S. T.; Gilbert, A. T.

B.; Slipchenko, L. V.; Levchenko, S. V.; O’Neill, D. P.; DiStasio Jr, R. A.; Lochan, R. C.; Wang, T.; Beran, G. J. O.; Besley, N. A.; Herbert, J. M.; Lin, C. Y.; Van Voorhis, T.; Chien, S. H.; Sodt, A.; Steele, R. P.; Rassolov, V. A.; Maslen, P. E.; Korambath, P. P.; Adamson, R. D.; Austin, B.;

Baker, J.; Byrd, E. F. C.; Dachsel, H.; Doerksen, R. J.; Dreuw, A.; Dunietz, B. D.; Dutoi, A. D.;

Furlani, T. R.; Gwaltney, S. R.; Heyden, A.; Hirata, S.; Hsu, C.-P.; Kedziora, G.; Khalliulin, R.

Z.; Klunzinger, P.; Lee, A. M.; Lee, M. S.; Liang, W. Z.; Lotan, I.; Nair, N.; Peters, B.; Proynov, E. I.; Pieniazek, P. A.; Rhee, Y. M.; Ritchie, J.; Rosta, E.; Sherrill, C. D.; Simmonett, A. C.;

Subotnik, J. E.; Woodcock III, H. L.; Zhang, W.; Bell, A. T.; Chakraborty, A. K.; Chipman, D.

M.; Keil, F. J.; Warshel, A.; Hehre, W. J.; Schaefer III, H. F.; Kong, J.; Krylov, A. I.; Gill, P. M.

W.; Head-Gordon, M. Phys. Chem. Chem. Phys. 2006, 8, 3172.

(3)

S-3

Figure S1. Infrared spectra for H2 desorption recorded at 14 K for Mn-BTT, in which the pressure (and the total H2 remaining in the system) was gradually reduced.

(4)

S-4

Figure S2. Infrared spectra for H2 desorption recorded at 14 K for Fe-BTT, in which the pressure (and the total H2 remaining in the system) was gradually reduced.

(5)

S-5

Figure S3. Infrared spectra for H2 desorption recorded at 14 K for Cu-BTT, in which the pressure (and the total H2 remaining in the system) was gradually reduced.

(6)

S-6

Figure S4. H2 adsorption isotherms for Mn-BTT collected at 77 K (blue) and 87 K (green). The solid lines represent the dual-site Langmuir fit to the data, using the parameters tabulated in Table S1.

(7)

S-7

Figure S5. H2 adsorption isotherms for Fe-BTT collected at 77 K (blue) and 87 K (green). The solid lines represent the dual-site Langmuir fit to the data, using the parameters tabulated in Table S2.

(8)

S-8

Figure S6. H2 adsorption isotherms for Cu-BTT collected at 77 K (blue) and 87 K (green). The solid lines represent the dual-site Langmuir fit to the data, using the parameters tabulated in Table S3.

(9)

S-9

Figure S7. The lowest-pressure region of the H2 adsorption isotherm for Fe-BTT collected at 77 K. The solid line represents the dual-site Langmuir fit to the data, using the parameters tabulated in Table S4.

(10)

S-10

Table S1. Dual-site Langmuir fit parameters for the H2 isotherms for Mn-BTT in Figure S4.

Parameter

T

77 K 87 K

qsat1 1.21214 1.34085

b1 185.22316 32.77728

v1 0.92104 0.93787

qsat2 19.48467 16.67445

b2 0.9409 0.57771

v2 0.66854 0.77047

Table S2. Dual-site Langmuir fit parameters for the H2 isotherms for Fe-BTT in Figure S5.

Parameter

T

77 K 87 K

qsat1 7.9845 0.61692

b1 1.59297 455.7024

v1 0.97761 0.754

qsat2 50.0 50.0

b2 0.16279 0.18357

v2 0.27638 0.51252

(11)

S-11

Table S3. Dual-site Langmuir fit parameters for the H2 isotherms for Cu-BTT in Figure S6.

Parameter

T

77 K 87 K

qsat1 2.75088 2.76398

b1 456.97063 62.91413

v1 1.03415 1.00654

qsat2 18.30037 16.52023

b2 0.98154 0.57883

v2 0.66592 0.75204

Table S4. Dual-site Langmuir fit parameters for the lowest-pressure portion of the 77 K H2

isotherm for Fe-BTT in Figure S7.

Parameter

T

77 K

qsat1 1.27932

b1 417.16893

v1 0.63856

qsat2 0.00121

b2 5.22471E-06

v2 62.77542

參考文獻

相關文件

 Everyone was born with a star which glowed and dimmed with their fortunes.  People who were close were fragments of the same stars that went searching for each other from

Centre for Learning Sciences and Technologies (CLST) The Chinese University of Hong Kong..

KS1-N2-2 Perform multiplication and division of three numbers at most, and use the commutative and associative properties of multiplication, multiplication up to 3-digit

In the past, studies on the impact of information disclosure transparency and corporate governance on company value and operating performance have resulted in inconsistent

Wang, Solving pseudomonotone variational inequalities and pseudoconvex optimization problems using the projection neural network, IEEE Transactions on Neural Networks 17

The proposed neural network model was developed based on a smoothed natural residual merit function involving an uncon- strained minimization reformulation of the

To resolve this, we employ thermally-assisted-occupation density functional theory (TAO-DFT) to predict the electronic and hydrogen storage properties of Li-terminated linear

2 Department of Physics, Center for Theoretical Sciences, and Center for Quantum Science and Engineering, National Taiwan University, Taipei 10617, Taiwan..