The Laplacian spectral radius of a graph
Fan-Hsuan Lin Advisor: Chih-Wen Weng
National Chiao Tung University
August 2, 2014
Outline
1... Introdution
2... Preliminaries
3... Main Results
Some Corollary about Theorem 1 Main Theorem
Applications of the main theorem
4... Conjecture
Outline
1... Introdution
2... Preliminaries
3... Main Results
Some Corollary about Theorem 1 Main Theorem
Applications of the main theorem
4... Conjecture
.Definition ..
Let G = (V, E) be a simple connected graph with vertex set V ={v1, v2,· · · , vn} and edge set E. Let A(G) be the adjacency matrix of G. Denote by di=|G1(vi)| the degree of vertex vi ∈ V (G), where G1(vi)is the set of neighbors of vi, and let
D(G)=diag(d1, d2,· · · , dn) be the diagonal matrix with entries d1, d2,· · · , dn. Then the matrix
L(G) = D(G)− A(G)
is called the Laplacian matrix of a graph G. The Laplacian spectrum of G is
S(G) = (ℓ1(G), ℓ2(G),· · · , ℓn(G)),
where ℓ1(G)≥ ℓ2(G)≥ · · · ≥ ℓn(G)are eigenvalues of L(G) arranged in nonincreasing order. Especially, ℓ (G)is called Laplacian spectral
.Definition ..
...
Let G = (V, E) be a simple connected graph with vertex set V ={v1, v2,· · · , vn} and edge set E.Then
.
1.. vi ∼ vj means that vi and vj are adjacent in G.
. ..
2 mi = 1
di
∑
vj∼vidj is called average 2-degree of vertex vi. .
3.. A complement of G is a graph with the same vertices as G has and with those and only those edges which do not appear in G.
The graph is denoted by Gc.
In 1985, Anderson and Morley showed the following bound ℓ1(G)≤ max
vi∼vj{di+ dj} . (1)
In 1998, Merris improved the bound (1), as follows ℓ1(G)≤ max
vi∈V (G){di+ mi} . (2)
In 2000, Rojo et al. showed the following upper bound ℓ1(G)≤ max
vi∼vj{di+ dj− |G1(vi)∩ G1(vj)|} . (3) In 2001, Li and Pan gave a bound, as follows
ℓ1(G)≤ max
vi∈V (G)
{√2di(di+ mi) }
. (4)
In 2004, Zhang showed the following result, which is always better than the bound (4).
Outline
1... Introdution
2... Preliminaries
3... Main Results
Some Corollary about Theorem 1 Main Theorem
Applications of the main theorem
4... Conjecture
We have the following facts about L(G) and S(G).
. ..
1 L(G)is positive semi-definite.
.
2.. ℓn(G) = 0is an eigenvalue of L(G) corresponding to the eigenvector 1n, where 1nis the all-ones vector.
. ..
3 If X = (x1, x2,· · · , xn)⊤is an eigenvector of L(G) corresponding to ℓi(G) (1≤ i ≤ n − 1), then∑n
i=1xi= 0.
.
4.. L(G) + L(Gc) = nI − J, where I and J are identity matrix and all-ones matrix, respectively.
.
5.. If X is the eigenvector of L(G) corresponding to ℓi(G) (1≤ i ≤ n − 1), then X is also an eigenvector of L(Gc) corresponding to n− ℓi(G).
.
6.. ℓi(G)≤ n, for 1 ≤ i ≤ n.
.Definition ..
...
Let G = (V, E) be a simple connected graph with vertex set V ={v1, v2,· · · , vn} and edge set E. The following notations are adopted.
. ..
1 λ(G) = min
vi∼vj|G1(vi)∩ G1(vj)|.
. ..
2 µ(G) = min
vivj|G1(vi)∩ G1(vj)|.
In 2013, Guo et al. improve the bound (5) and showed the following theorem.
.Theorem 1 ..
...
Let G = (V, E) be a simple connected graph with vertex set V ={v1, v2,· · · , vn} and edge set E. We define
M (G) = max
vi∈V (G)
{2di− λ +√
4dimi− 4λdi+ λ2 2
} .
Then
ℓ1(G)≤ M(G), (6)
where λ = λ(G).
Outline
1... Introdution
2... Preliminaries
3... Main Results
Some Corollary about Theorem 1 Main Theorem
Applications of the main theorem
4... Conjecture
Outline
1... Introdution
2... Preliminaries
3... Main Results
Some Corollary about Theorem 1 Main Theorem
Applications of the main theorem
4... Conjecture
We have two corollaries about Theorem 1.
.Corollary 3 ..
...
If G is a k-regular graph, then
ℓ1(G)6 2k − λ, where λ = λ(G).
.Corollary 4 ..
...
If G is a simple connected graph with n vertices, then ℓ1(G)≤ min {M(G), n} .
Outline
1... Introdution
2... Preliminaries
3... Main Results
Some Corollary about Theorem 1 Main Theorem
Applications of the main theorem
4... Conjecture
.Proposition 5 ..
...
Let G = (V, E) be a simple connected graph with vertex set V ={v1, v2,· · · , vn} and edge set E.
. ..
1 If T = A(G)2 and T = (tij), we have tij =|G1(vi)∩ G1(vj)| and
∑n j=1
tij = ∑
vj∼vi
dj = midi.
. ..
2 If X = (x1, x2,· · · , xn)⊤is a vector, X⊤L(G)X = ∑
j<k vj∼vk
(xj − xk)2.
.Theorem 6
..Let G = (V, E) be a simple connected graph with vertex set V ={v1, v2,· · · , vn} and edge set E. Let
S(G) = (ℓ1(G), ℓ2(G),· · · , ℓn(G))be the Laplacian spectrum of G. We define
M′(G) = max
vi∈V (G)
{2di− λ + µ +√ Bi
2 : Bi ≥ 0
}
and
N′(G) = min
vi∈V (G)
{2di− λ + µ −√ Bi
2 : Bi ≥ 0
} ,
where Bi= 4dimi− 4(λ − µ)di+ (λ− µ)2− 4µn, λ = λ(G), and µ = µ(G). Then
N′(G)≤ ℓ(G) ≤ M′(G), (7)
.proof(cont.) ..
Let X = (x1, x2,· · · , xn)⊤be the eigenvector of L(G) corresponding to ℓ(G). We have
∑n
i=1
[di− ℓ(G)]2x2i =∥(D(G) − ℓ(G)I)X∥2
=∥(D(G) − L(G))X∥2
=∥A(G)X∥2
=X⊤T X
=
∑n
i=1
tiix2i+ 2∑
j<k
tjkxjxk
=
∑n
i=1
tiix2i+∑
j<k
tjk(x2j+ x2k− (xj− xk)2)
=
∑n
i=1
((tii+
∑n
j=1j̸=i
tij)x2i)− ∑
j<k v∼v
tjk(xj− xk)2− ∑
j<k v v
tjk(xj− xk)2
.Proof.
..
∑n
i=1
[di− ℓ(G)]2x2i =
∑n
i=1
((tii+
∑n
j=1 j̸=i
tij)x2i)− ∑
j<k vj∼vk
tjk(xj− xk)2− ∑
j<k vjvk
tjk(xj− xk)2
≤
∑n
i=1
dimix2i− λ ∑
j<k vj∼vk
(xj− xk)2− µ ∑
j<k vjvk
(xj− xk)2
=
∑n
i=1
dimix2i− λX⊤L(G)X− µX⊤L(Gc)X
=
∑n
i=1
dimix2i− λℓ(G)∥X∥2− µ(n − ℓ(G))∥X∥2
=
∑n
i=1
dimix2i− λℓ(G)
∑n
i=1
x2i− µ(n − ℓ(G))
∑n
i=1
x2i.
.proof(cont.) ..Thus, we have
∑n i=1
[(di− ℓ(G))2− dimi+ λℓ(G) + µ(n− ℓ(G))]x2i ≤ 0. (8)
Then there must exist a vertex visuch that
(di− ℓ(G))2− dimi+ λℓ(G) + µ(n− ℓ(G))
=ℓ(G)2− (2di− λ + µ)ℓ(G) + (d2i − dimi+ µn)≤ 0, which implies that
2di− λ + µ −√ Bi
2 ≤ ℓ(G) ≤ 2di− λ + µ +√ Bi
2 .
Therefore,
N′(G)≤ ℓ(G) ≤ M′(G).
When ℓ(G) = ℓ1(G)or ℓ(G) = ℓn−1(G), we have the following inequalities about ℓ1(G)and ℓn−1(G).
.Theorem 7 ..
...
Let G be a simple connected graph. Then
ℓ1(G)≤ M′(G) (9)
and
ℓn−1(G)≥ N′(G) (10)
.Definition ..
...
We call G is a strongly regular graph with parameter (n, k, λ, µ), if G is a k-regular graph with n vertices and common neighbours of two adjacent/nonadjcent vertices is a fixed number λ/µ, respectively, where µ̸= 0 and G is denoted by srg(n, k, λ, µ).
.Remark ..
...
n = 1 + k + k(k− 1 − λ)
µ .
.Example 1
..In this example, G is the Petersen graph which is srg(10, 3, 0, 1), as follows.
..
. .
3
.
4
. 5
.
6
.
7
.
8
.
9
.
10
.Example 1(cont.) ..
We have λ = 0, µ = 1, and di = 3, for any vertex vi, and we compute ℓ1(G) = 5. We calculate
M (G) = max
vi∈V (G)
{2di− λ +√
4dimi− 4λdi+ λ2 2
}
=2× 3 − 0 +√
4× 32− 0 + 0 2
=6.
M′(G) = max
vi∈V (G)
{
2di− λ + µ +√
4dimi− 4(λ − µ)di+ (λ− µ)2− 4µn 2
}
=2× 3 − 0 + 1 +√
4× 32− 4(0 − 1)3 + (0 − 1)2− 4 × 1 × 10 2
=5.
′ ≤ M(G) = 6.
.Corollay 8 ..
...
If G is a simple connected graph with n vertices, then ℓ1(G)≤ min{
M′(G), n} .
.Theorem 9 ..
...
Let G = (V, E) be a simple connected graph with vertex set V ={v1, v2,· · · , vn} and edge set E. Then
min{
M′(G), n}
≤ min {M(G), n} .
.Sketch the proof of Theorem 8 ..
...
Case 1: When M (G)≥ n,
we have min{M(G), n} = n ≥ min {M′(G), n}
Case 2: When M (G) < n. Let ζi be the largest root of
fi(x) = (di− x)2− dimi+ λx = 0and ξi be the largest root of gi(x) = (di− x)2− dimi+ λx + µ(n− x) = 0, for 1 ≤ i ≤ n, where λ = λ(G)and µ = µ(G). Then we have
ζi= 2di− λ +√
4dimi− 4λdi+ λ2 2
and
ξi= 2di− λ + µ +√
4dimi− 4(λ − µ)di+ (λ− µ)2− 4µn
2 .
.Sketch the proof of Theorem 8(cont.) ..
..
ξi
.
ζi
.
(ζi, gi(ζi))
.
y = gi(x)
Outline
1... Introdution
2... Preliminaries
3... Main Results
Some Corollary about Theorem 1 Main Theorem
Applications of the main theorem
4... Conjecture
In 1998, R. Merris got the following result.
.Definition ..
...
Let G1= (V1, E1)and G2= (V2, E2)be two graphs with disjoint vertex sets. Then we define the join of two graphs G1and G2 is
G1∨ G2 = (V, E), where V = V1∪ V2 and E = E1∪ E2∪ {xy|x ∈ V1and y∈ V2} . .Theorem
..
Let G1= (V1, E1)and G2= (V2, E2)be two graphs with disjoint vertex sets and (|V1|, |V2|) = (n, m). Let λi and νj be eigenvalue of L(G1)and L(G2)corresponding to the eigenvector viand wj, respectively, where
< λi >and < νj >both are nonincreasing sequences, for all 1≤ i ≤ n and 1≤ j ≤ m. Then, 0, λi+ m, νj + n, and n + m are eigenvalues of L(G1∨ G2)corresponding to the eigenvector 1n+m, (vi⊤, 0⊤m)⊤,
⊤ ⊤ ⊤ ⊤ −n1⊤ ⊤ ≤ i ≤ n and
.Corollary 10 ..
...
If G is k-regular graph, then
ℓ1(G)≤2k− λ + µ +√
4k2− 4(λ − µ)k + (λ − µ)2− 4µn 2
and
ℓn−1(G)≥ 2k− λ + µ −√
4k2− 4(λ − µ)k + (λ − µ)2− 4µn
2 .
.Corollary 11 ..
...
If G is a strongly regular graph with parameters (n, k, λ, µ), then
ℓ1(G) = M′(G) = 2k− λ + µ +√
(λ− µ)2+ 4(k− µ) 2
and
ℓn−1(G) = N′(G) = 2k− λ + µ −√
(λ− µ)2+ 4(k− µ)
2 .
.Example 2
..We usually call Fℓ = K1∨ ℓK2be a fan graph.
. .
1 .
4
. 2
. 3 .
5
When G = F2, we have
A(G) =
0 0 0 1 1 0 0 1 0 1 0 1 0 0 1 1 0 0 0 1 1 1 1 1 0
, L(G) =
2 0 0 −1 −1
0 2 −1 0 −1
0 −1 2 0 −1
−1 0 0 2 −1
−1 −1 −1 −1 4
.
.Example 2(cont.) ..
Hence, λ = 1, µ = 1, and X =
1 1 1 1
−4
is a eigenvector corresponding to the eigenvalue ℓ1(G) = 5.
We calculate M′(G)and the equality in (8) as shown in the following table.
i di mi ξi ϕi
1∼ 4 2 3 3 (2− 5)2− 2 · 3 + 1 · 5 + 1 · (5 − 5) = 8 5 4 2 8+√212 ≈ 5.73 (4 − 5)2− 4 · 2 + 1 · 5 + 1 · (5 − 5) = −2 ℓ1(G) = 5 < 8+
√12
2 ,so the inequality (9) does not hold. But the
∑5 2
Example 3/Example 4 are some graphs, which satisfy the equality in (8) with n = 5/n = 6.
.Example 3 ..
...
..
1 .
2 .
3
. 4
. 5
..
1 .
2 .
3
. 4
. 5
..
1 .
2 .
3
. 4
. 5
K1,4 K2,3 K5
.Example 3(cont.) ..
G L(G) M′(G) ℓ1(G)
K1,4
4 −1 −1 −1 −1
−1 1 0 0 0
−1 0 1 0 0
−1 0 0 1 0
−1 0 0 0 1
8 +√ 16
2 = 6 5
K2,3
3 0 −1 −1 −1 0 3 −1 −1 −1
−1 −1 2 0 0
−1 −1 0 2 0
−1 −1 0 0 2
8 +√ 12
2 ≈ 5.73 5
K
4 −1 −1 −1 −1
−1 4 −1 −1 −1
−1 −1 4 −1 −1
5 5
.Example 4 ..
..
1 .
2 .
3
.
4
. 5
. 6
..
1 .
2 .
3
.
4
. 5
. 6
..
1 .
2 .
3
.
4
. 5
. 6
C6 K1,5 K2,4
ℓ1(G) = M′(G) ℓ1(G)̸= M′(G) ℓ1(G)̸= M′(G)
..
1 .
2 .
3
.
4
. 5
. 6
..
1 .
2 .
3
.
4
. 5
. 6
..
1 .
2 .
3
.
4
. 5
. 6
K3,3 K2,2,2 K6
.Corollary 12 ..
...
Let G be a complete k-partite graph(k≥ 2). Then, ℓ1(G) = M′(G)if and only if every part in G has the same vertices.
.Example 6
..In this example, we have a graph, which are not k-partite graph or strongly regular graph. We have λ = 0, µ = 1, di= 3, for all vertex vi. Then
M′(G) = 6− 0 + 1 +√
4× 9 − 4(−1)3 + (−1)2− 4(1)(8)
2 =7 +√
17
2 = ℓ1(G)
..
. .
3 .
4
.
5
.
6
. 7
. 8
Outline
1... Introdution
2... Preliminaries
3... Main Results
Some Corollary about Theorem 1 Main Theorem
Applications of the main theorem
4... Conjecture
.Conjecture ..
...
Let G be a simple connected graph. If G satisfy M′(G) = ℓ1(G), then Gis a regular graph.
W.N. Anderson, T.D. Morley, Eigenvalues of the Laplacian of a graph,
Linear Multilinear Algebra, 18 (1985), 141-145.
A.E. Brouwer and W. H. Haemers Spectra of Graphs, 2012: Springer-Verlag
Miroslav Fiedler, Praha, Algebraic connectivity of graphs, Czechoslovak Mathematical Journal 23 (98) 1973, Praha.
J.M. Guo, J. Li, W.C. Shiu, A note on the upper bounds for the Laplacian spectral radius of graphs,
J.S. Li, Y.L. Pan, De Caen’s inequality and bounds on the largest Laplacian eigenvalue of a graph,
Linear Algebra and its Applications, 328 (2001), 153-160.
R. Merris, Laplacian graph eigenvectors,
Linear Algebra and its Applications 278 (1998), 221-236.
R. Merris, A note on Laplacian graph eigenvalues, Linear Algebra and its Applications, 285 (1998), 33-35.
M. W. Newman, The Laplacian Spectrum of Graphs , University of Manitoba, Winnipeg, MB, Canada, 2000.
O. Rojo, R. Soto, H. Rojo, , An always nontrivial upper bound for Laplacian graph eigenvalues,
Linear Algebra and its Applications, 312 (2000), 155-159.
L.S. Shi, Bounds on the (Laplacian) spectral radius of graphs, Linear Algebra and its Applications, 422 (2007), 755-770.
X.D. Zhang, Two sharp upper bounds for the Laplacian eigenvalues,
Linear Algebra and its Application 376 (2004), 207-213.
X.D. Zhang, R. Luo, The Laplacian eigenvalues of mixed graphs,