• 沒有找到結果。

二、外文文獻

Arnon, I., Cottrill, J., Dubinsky, E., Oktaç, A., Roa Fuentes, S., Trigueros, M., & Weller, K. (2014).

APOS theory: A framework for research and curriculum development in mathematics education.

New York, NY: Springer. doi:10.1007/978-1-4614-7966-6

Ayres, P. (2006). Impact of reducing intrinsic cognitive load on learning in a mathematical domain.

Applied Cognitive Psychology, 20(3), 287-298. doi:10.1002/acp.1245

Ball, D. L., & Cohen, D. K. (1996). Reform by the book: What is − or might be − the role of curriculum materials in teacher learning and instructional reform? Educational Researcher, 25(9), 6-8, 14. doi:10.3102/0013189X025009006

Barwell, R. (2004). What is numeracy? For the Learning of Mathematics, 24(1), 20-22.

Borovik, A. V., & Gardiner, T. (2006, July). Mathematical abilities and mathematical skills. Paper presented at the World Federation of National Mathematics Competitions Conference, Cambridge, UK.

Chiou, J.-Y., & Tso, T.-Y. (2013). Design and experiment on a touchscreen learning software for factoring quadratic trinomials. In M. Inprasitha (Ed.), Proceedings of the 6th East Asia Regional Conference on Mathematics Education (Vol. 1, p. 216). Phuket, Thailand:

International Commission on Mathematical Instruction.

D’Ambrosio, U. (1999). Literacy, matheracy, and technocracy: A trivium for today. Mathematical Thinking and Learning, 1(2), 131-153. doi:10.1207/s15327833mtl0102_3

de Lange, J. (2006). Mathematical literacy for living from OECD-PISA perspective. Tsukuba Journal of Educational Study in Mathematics, 25(1), 13-35.

delMas, R. C. (2002). Statistical literacy, reasoning, and learning: A commentary. Journal of Statistics Education, 10(3). Retrieved from http://www.amstat.org/publications/jse/v10n3/delmas_

discussion.html

Dubinsky, E., & McDonald, M. A. (2001). APOS: A constructivist theory of learning in undergraduate mathematics education research. In D. Holton, M. Artigue, U. Kirchgräber, J.

Hillel, M. Niss, & A. Schoenfeld (Eds.), The teaching and learning of mathematics at university level: An ICMI study (Vol. 7, pp. 275-282). Dordrecht, the Netherlands: Kluwer Academic.

doi:10.1007/0-306-47231-7_25

Duval, R. (2006). A cognitive analysis of problems of comprehension in a learning of mathematics.

Educational Studies in Mathematics, 61(1-2), 103-131. doi:10.1007/s10649-006-0400-z

Fischbein, E. (1993). The theory of figural concepts. Educational Studies in Mathematics, 24(2), 139-162. doi:10.1007/BF01273689

54 素養導向數學教材設計 左台益、李健恆

Gal, I. (2004). Statistical literacy: Meanings, components, responsibilities. In D. Ben-Zvi & J.

Garfield (Eds.), The challenge of developing statistical literacy, reasoning and thinking (pp.

47-78). Dordrecht, the Netherlands: Springer. doi:10.1007/1-4020-2278-6_3

Geiger, V., Goos, M., & Forgasz, H. (2015). A rich interpretation of numeracy for the 21st century:

A survey of the state of the field. ZDM – Mathematics Education, 47(4), 531-548. doi:10.1007/

s11858-015-0708-1

Goos, M., Dole, S., & Geiger, V. (2012). Numeracy: Across the curriculum. The Australian Mathematics Teacher, 68(1), 3-7.

Iowa Department of Education. (2010). Iowa core mathematics. Retrieved from https://www.

educateiowa.gov/sites/files/ed/documents/K-12_Mathematics_0.pdf

Jablonka, E. (2003). Mathematical literacy. In A. J. Bishop, M. A. Clement, C. Keitel, J. Kilpatrick,

& F. K. S. Leung (Eds.), Second international handbook of mathematics education (pp. 75-102).

Dordrecht, the Netherlands: Kluwer Academic. doi:10.1007/978-94-010-0273-8_4

Kaiser, G., & Willander, T. (2005). Development of mathematical literacy: Results of an empirical study. Teaching Mathematics and Its Applications, 24(2-3), 48-60. doi:10.1093/teamat/hri016 Karsenty, R. (2014). Mathematical ability. In S. Lerman (Ed.), Encyclopedia of mathematics

education (pp. 372-375). Dordrecht, the Netherlands: Springer. doi:10.1007/978-94-007-4978- 8_94

Knoblauch, C. H. (1990). Literacy and the politics of education. In A. A. Lunsford, H. Moglen, & J.

Slevin (Eds.), The right to literacy (pp. 74-80). New York, NY: Modern Language Association of America.

Maharaj, A. (2013). An APOS analysis of natural science students’ understanding of derivatives.

South African Journal of Education, 33(1), 1-19. doi:10.15700/saje.v33n1a458

Massachusetts Department of Elementary and Secondary Education. (2017). 2017 mathematics curriculum framework: Grades pre-kindergarten to 12. Malden, MA: Author.

Metsisto, D. (2005). Reading in the mathematics classroom. In J. M. Kenney, E. Hancewicz, L.

Heuer, D. Metsisto, & C. L. Tuttle (Eds.), Literacy strategies for improving mathematics instruction (pp. 9-23). Alexandria, VA: Association for Supervision and Curriculum Development.

Ministry of Education. (2012). Mathematics syllabus: Secondary one to four express & normal (academic) course. Retrieved from https://www.moe.gov.sg/docs/default-source/document/

education/syllabuses/sciences/files/mathematics-syllabus-sec-1-to-4-express-n(a)-course.pdf Mullis, I. V. S., Martin, M. O., & Foy, P. (2008). TIMSS 2007 international mathematics report:

Findings from IEA’s trends in international mathematics and science study at the fourth and eighth grades. Chestnut Hill, MA: TIMSS & PIRLS International Study Center.

左台益、李健恆 素養導向數學教材設計 55

National Research Council. (2001). Adding it up: Helping children learn mathematics. Washington, DC: National Academy Press. doi:10.17226/9822

Niss, M. (2003). Mathematical competencies and the learning of mathematics: The Danish KOM project. In A. Gagatsis & S. Papastavridis (Eds.), 3rd mediterranean conference on mathematical education (pp. 115-124). Athens, Greece: Hellenic Mathematical Society.

Niss, M. (2015). Mathematical competencies and PISA. In K. Stacey & R. Turner (Eds.), Assessing mathematical literacy: The PISA experience (pp. 35-55). Cham, Switzerland: Springer.

doi:10.1007/978-3-319-10121-7_2

Niss, M., Blum, W., & Galbraith, P. (2007). Introduction. In W. Blum, P. L. Galbraith, H. W. Henn,

& M. Niss (Eds.), Modelling and applications in mathematics education: The 14th ICMI study (pp. 3-32). New York, NY: Springer.

Niss, M., Bruder, R., Plannas, N., Turner, R., & Villa-Ochoa, J. A. (2016). Survey team on:

Conceptualisation of the role of competencies, knowing and knowledge in mathematics education research. ZDM – Mathematics Education, 48(5), 611-632. doi:10.1007/s11858-016- 0799-3

Niss, M., & Højgaard, T. (Eds.). (2011). Competencies and mathematical learning: Ideas and inspiration for the development of mathematics teaching and learning in Denmark. Roskilde, Denmark: Roskilde University.

Nunes, T., Schliemann, A. D., & Carraher, D. W. (1993). Street mathematics and school mathematics. New York, NY: Cambridge University Press.

Ojose, B. (2011). Mathematics literacy: Are we able to put the mathematics we learn into everyday use? Journal of Mathematics Education, 4(1), 89-100.

Organisation for Economic Co-operation and Development. (2012). Literacy, numeracy and problem solving in technology-rich environments: Framework for the OECD survey of adult skills. Paris, France: Author. doi:10.1787/9789264128859-en

Organisation for Economic Co-operation and Development. (2016). PISA 2015 assessment and analytical framework: Science, reading, mathematics, and financial literacy. Paris, France:

Author. doi:10.1787/9789264255425-en

Papert, S. (1993). Obsolete skill set: The 3 Rs. Wired Magazine. Retrieved from https://www.wired.

com/1993/02/1-2-papert/

Parraguez, M., & Oktaç, A. (2010). Construction of the vector space concept from the viewpoint of APOS theory. Linear Algebra and Its Applications, 432(8), 2112-2124. doi:10.1016/j.laa.2009.

06.034

56 素養導向數學教材設計 左台益、李健恆

Pugalee, D. K. (2004). A comparison of verbal and written descriptions of students’ problem solving processes. Educational Studies in Mathematics, 55(1-3), 27-47. doi:10.1023/B:EDUC.00000 17666.11367.c7

Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on processes and objects as different sides of the same coin. Educational Studies in Mathematics, 22(1), 1-36.

doi:10.1007/BF00302715

Stacey, K., & Turner, R. (2015). The evolution and key concepts of the PISA mathematics frameworks. In K. Stacey & R. Turner (Eds.), Assessing mathematical literacy: The PISA experience (pp. 5-33). Cham, Switzerland: Springer. doi:10.1007/978-3-319-10121-7_1

Stahl, G., & The VMT Project Team. (2013). Dynamic-geometry activities with GeoGebra for virtual math teams. Retrieved from http://gerrystahl.net/elibrary/topics/activities.pdf

Steen, L. A. (2001). The case for quantitative literacy. In L. A. Steen (Ed.), Mathematics and democracy: The case for quantitative literacy (pp. 1-22). Princeton, NJ: National Council on Education and the Disciplines.

Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12(2), 257-285. doi:10.1016/0364-0213(88)90023-7

Turner, R. (2012, July). Mathematical literacy: Are we there yet? Paper presented at ICME-12, Topic Study Group 6: Mathematics literacy, Seoul, Korea.

Turner, R., Blum, W., & Niss, M. (2015). Using competencies to explain mathematical item demand:

A work in progress. In K. Stacey & R. Turner (Eds.), Assessing mathematical literacy: The PISA experience (pp. 85-115). Cham, Switzerland: Springer. doi:10.1007/978-3-319-10121-7_4 van den Akker, J. (2003). Curriculum perspectives: An introduction. In J. van den Akker, W. Kuiper,

& U. Hameyer (Eds.), Curriculum landscapes and trends (pp. 1-10). Dordrecht, the Netherlands: Springer. doi:10.1007/978-94-017-1205-7_1

Voskoglou, M. (2007). Formalism and intuition in mathematics: The role of the problem. Quaderni di Ricerca in Didattica, 17, 113-120.

Weinstein, C. E. (1996). Learning how to learn: An essential skill for the 21st century. The Educational Record, 77(4), 49-52.

Weller, K., Arnon, I., & Dubinsky, E. (2009). Preservice teachers’ understanding of the relation between a fraction or integer and its decimal expansion. Canadian Journal of Science, Mathematics, and Technology Education, 9(1), 5-28. doi:10.1080/14926150902817381

Yore, L. D., Pimm, D., & Tuan, H.-L. (2007). The literacy component of mathematical and scientific literacy. International Journal of Science and Mathematics Education, 5(4), 559-589. doi:10.

1007/s10763-007-9089-4

左台益、李健恆 素養導向數學教材設計 57

Journal of Research in Education Sciences 2018, 63(4), 29-58

doi:10.6209/JORIES.201812_63(4).0002

Design and Development of Mathematical Literacy-Oriented Subject Materials

Tai-Yih Tso Kin Hang Lei

Department of Mathematics,

National Taiwan Normal University Department of Mathematics, National Taiwan Normal University

Abstract

To help students’ adapt in a rapidly changing society, subject materials should incorporate learning components that feature knowledge, skills, thinking, and attitudes. Mathematics is commonly used in daily life, and it is vital for technological development and explaining economic phenomena. The term “mathematical literacy” is regarded as the main idea behind compulsory education in Taiwan. However, studies have often explored the objectives and implications of the mathematics curriculum rather than the design of subject materials for mathematical literacy. In this paper, based on a review of the literature, we propose that knowledge, application, disposition, and learning are the four components of mathematical literacy. Mathematical literacy-oriented subject materials can be designed based on a learning loop, which first translates real-life problems into mathematical problems and then uses the mathematical results to explain the context. This learning loop framework illustrates cognitive development of knowledge based on the genetic decomposition of APOS theory. The framework can be used to develop literacy-oriented mathematical subject materials with knowledge at the center, incorporating application, disposition, and learning and possessing implicit and explicit features. When designing teaching materials, some components can be excluded. The components of knowledge, application, disposition, and learning serve as the approach to teaching design rather than the sequence of cognitive development. The designers of subject materials should consider the development of both learners’ cognition and understanding of mathematical concepts. Moreover, the skills of knowledge application, mathematical perspective, and lifelong learning should be included in subject materials. Herein, several examples of possible

Corresponding Author: Kin Hang Lei, E-mail: kinhanglei16@gmail.com

Manuscript received: Jan. 26, 2018; Revised: Mar. 28, 2018, Apr. 18, 2018; Accepted: Apr. 18, 2018.

58 素養導向數學教材設計 左台益、李健恆

directions for the design of subject materials are proposed, alongside suggestions for further investigations.

Keywords: APOS theory, components of literacy, design of subject materials, mathematical literacy

相關文件