• 沒有找到結果。

第二章 理論與文獻探討

2.2 太陽能電池之文獻探討

2.2.1 太陽能電池之效率文獻

1988 年,R. R. King 等人提出點接觸太陽能電池(point-contact solar cell),採 用阻值為 100 -cm 的 N 型矽作為基板。晶片厚度為 100 m,並以 1100 Å SiO2

1999 年,J. Zhao 等人提出射極鈍化背面局部擴散(passivated emitter, rear

射結構,並以 ZnS 與 MgF2作為雙層抗反射膜(double layer antireflection coating, DLARC )。使用阻值 1 -cm 與厚度 450 m 的 P 型矽晶片來製作太陽能電池,其

2003 年,M. Tanaka 等人提出(Heterojunction with Intrinsic Thin-layer, HIT)太 陽能電池,這是一種目前為 Sanyo 公司之專利的新型三明治結構。採用阻值 1 -cm 之 N 型矽作為基板,並對晶片正面磊晶 P 型矽與非晶矽,再於晶片背面磊晶非晶 矽與 N 型矽,最後再定義出電極。圖 2-14為 HIT 電池結構圖,以 a-Si (p/i) / c-Si / a-Si (i/n)三層作為結構,其效率可達 21.3 %。圖 2-15為其電性量測,電池大小為 100 平方公分【13】。

第二章 理論與文獻探討

evaporation emitter wrap through, RISE-EWT)的電池效率可達 21.4 %。圖 2-24為 RISE-EWT 電池結構與詳細製造過程示意圖;圖 2-25 與表 2-9 為結構 SEM 圖與 電性量測【19】。此團隊成功以 P 型矽基板,利用雷射脫落製程(laser ablation process) 達成穿孔,並在表面與穿孔形成高濃度的硼發射極(emitter),成功製作出一種製程 快速、簡單及無需黃光製程的高效率電池。

第二章 理論與文獻探討

(a) (b) Figure 2-4 (a) Schematic diagram of microgroove passivated emitter solar cell

(PESC). (b) Output characteristics of high efficiency microgroove PESC solar cell measured under standard terrestrial test conditions compared to those of previous generations of nongrooved PESC cells calibrated by the Solar Energy Research Institute (SERI), Colorado【5】.

(a) (b) Figure 2-5 (a) A cross-section of a texturized, point-contact solar front and back

surface diffusions. (b) Illuminated I-V curve of cell OS7-G at 100 mW/cm2, 25 °C , as measured at SERI. Cell OS7-G is a cell with a high resistivity substrate, a texturized front surface, and a lightly doped, planar, phosphorus diffusion on the front surface only. This diffusion is used only as a passivation【6】.

第二章 理論與文獻探討

(a) (b) Figure 2-6 (a) Schematic cross section of a MIS-contacted diffused junction silicon

solar cell with front grid deposited by metal evaporation through a shadow mask. (b) Measured one-sun current-voltage characteristics of a mechanically grooved MIS-n+p solar cell with the front grid formed by mask-free oblique evaporation of aluminum (cell aperture area 3.9 cm2)【7】.

Table 2-1 Measured I-sun parameters (AM1.5G, 100 mW/cm2, 25 C, aperture area 3.9 cm2) of the best shadow mask evaporated and the best mask-free metalized MIS-n+p silicon solar cells (0.5 -cm FZ p-silicon) fabricated in the course of this work【7】.

第二章 理論與文獻探討

(a) (b) Figure 2-7 (a) PERL (passivated emitter, rear locally-diffused) cell structure. (b) PERT

(passivated emitter, rear totally-diffused) cell structure【8】.

Table 2-2 The designated-area performance of 4 cm2 PERT MCZ cells and PERL FZ cells tested at Sandia National Laboratories under the standard global AM1.5 spectrum (100 mW/cm2) at 25 C【8】.

(a) (b)

Figure 2-8 (a) PERT cell structure on n-type substrate. (b) The performance of 4 cm2

PERT cells on n-type CZ and FZ silicon substrates, tested at Sandia National Laboratories under the standard 100 mW/cm2 AM1.5 global spectrum, at 25C【9】.

第二章 理論與文獻探討

(a)

(b)

Figure 2-9 (a) Schematic of the OECO MIS-n+p solar cell. (b) Process sequence for OECO MIS-n+p solar cells【10】.

Table 2-3 One-sun efficiencies (after 24 h illumination AM 1.5 G, 100 mW/cm2, 25 C) of 4 and 100 cm2 OECO MIS-n+p solar cells using different silicon materials【10】.

第二章 理論與文獻探討

Figure 2-10 High-throughput tool for surface grooving of OECO solar cells【10】.

(a)

(b)

Figure 2-11 (a) Solar cell grid formation by the novel oblique evaporation of contact (OECO) method. (b) High-throughput equipment with a rotating cylinder designed for oblique contact evaporation for OECO solar cells【10】.

第二章 理論與文獻探討

Figure 2-12 Principle of self-aligned contact metallization at the rear side of Back OECO solar cells by oblique metal evaporation on both flanks of the ridges【11】.

Figure 2-13 Processing sequence of Back-OECO solar cell used in this work. only industrially feasible, self-aligning steps are applied【12】.

第二章 理論與文獻探討

Figure 2-14 Schematic diagram of HIT cell Structure【13】.

Figure 2-15 Output characteristics of HIT solar cell (Measured by Sanyo)【13】.

p/i amorphous silicon

i/n amorphous silicon transparent

electrode

第二章 理論與文獻探討

(a) (b) Figure 2-16 (a) Basic principle of the Laser-Fired Contacts (LFC) process. After the

deposition of a passivation layer (SiO2 or SiNx) and an aluminum layer on the rear surface of the cell, a Nd:YAG laser is used to fire the aluminum locally through the insulating passivation layer. (b) Structure of the n+np+ LFE cell【14】.

(a) (b)

Figure 2-17 (a) Two-dimensional simulation model of a LFC contact. A damage zone

of 5 m around the local Al-BSF is included. (b)Photograph of 20 % LFC cell on a thin and flexible wafer【14】.

Table 2-4 Results of LFC cells on p-type and n-type substrate【14】.

第二章 理論與文獻探討

Figure 2-18 Schematic drawing of the solar cell design with plasma textured front surface and wet oxide/LFC rear【15】.

Table 2-5 Results of solar cells made from FZ and mc-Si measured under standard testing conditions (25 C, 100 mW/cm2, AM 1.5 global). The size of the cells is 1 cm2 aperture area【15】.

Figure 2-19 Schematic drawing of sliver solar cell【16】.

第二章 理論與文獻探討

Figure 2-20 Cross section of sliver solar cell【16】.

(a)

(b)

Figure 2-21 (a) 50 % coverage in module. (b) 20 % efficient sliver solar cell【16】.

第二章 理論與文獻探討

(a)

(b)

Figure 2-22 (a) Scheme of the fabricated solar cells. (b) Sketch of the sample structure for the lifetime investigation. Samples with and without an additional SiOx layer were fabricated【17】.

Table 2-6 Measure parameters of the best solar cell of this investigation【17】.

第二章 理論與文獻探討

Figure 2-23 Schematic cross-section of the n-type high efficiency back-contact back-junction silicon solar cell processed at Fraunhofer ISE【18】.

Table 2-7 Photographs and the geometry parameters of the rear side of the back-contacted solar cells with different pitches【18】.

Table 2-8 I-Vparameters for the best solar cells with a FSF and with the different pitches. Results of the cells with base resistivity of 1 -cm (left column) and 8 -cm (right column) are presented【18】.

第二章 理論與文獻探討

Figure 2-24 Baseline RISE-EWT solar cell fabrication process【19】.

(a) (b) Figure 2-25 SEM images of the (a) rear surface after laser processing and KOH etching

and (b) metalized RISE-EWT solar cell after Al etching【19】.

Table 2-9 Measured performance of cell variations I–III【19】.

射率(weighted reflectivity, Rw)約 17 %的粗化表面,而以電化學蝕刻形成之多孔洞 形貌,能將平均反射率降至約 8 %左右。雖然化學溶液酸蝕刻之製備時間較短且

相關文件