• 沒有找到結果。

近几年对多铁性材料的研究热潮导致对多铁性 物理的深刻理解并成功探索可能的应用. 相继发现 一些新的多铁性材料以及观测到很强的铁电/磁性耦 合或调控效应, 一些物理新机制也被提出来解释多 铁性及其中的效应. 然而, 相比于研究工作取得的成 果, 所揭示的问题和挑战似乎更多. 我们进行一些初 步的归纳, 虽然未必全面, 却希望可以引发更广泛和 深入的实验和理论研究工作:

(1) 多铁性—— 铁电性和磁性共存机制问题. 虽 然目前发现了如上所述的几种机制来实现铁电性和 磁性在单相材料中共存, 但其中仍然存在很多问题, 尤其是在螺旋状自旋序导致的多铁性系统中还有很 多基本问题. 首先, 螺旋状自旋序导致铁电性的微观 机制还没得到真正的解决. DM 相互作用是否是最重

50 一个接近单反铁磁畴的 LiCoPO4(100)样品在 10 K 下 采用二次谐波光成像得到的铁性磁涡旋矩特性畴的图像 (a), (b)和(c)分别是采用 2.25 eV 的二次谐波光 χzzz, χyyzzyyχyyz−χzyy

得到的图像, 图中左下角的黑色线条是唯一的反铁磁畴壁. (d)是根据 以上各图得到的这一样品中各种畴的示意图, 分别为最大的畴(反铁磁, +l; 铁性磁涡旋矩特性, +T; 标示为“++”)以及(+l,−T)和(−l,+T).

所有图中中心附近的一块黑色区域是样品破损区域[125]

要的作用? 在定量上是否能够解释多铁性以及在其 中发现的铁电性同磁性之间的强烈耦合? 螺旋状自旋 序相对铁电性是必须的吗(如在RMn2O5 中的情况)?

是否还存在其他能导致铁电性的自旋序? 这些重要 的物理问题都还有待进一步的研究. 如中国科技大 学 的 何 立 新 研 究 组 通 过 第 一 性 原 理 计 算 认 为, 在 RMn2O5中的不考虑自旋-轨道耦合效应以及非共线 的自旋序也能出现铁电极化, 因此他们提出其中的 铁电性仅仅是来源于一种非中心对称的自旋序 [126]. 目前看来, 多铁性一定要具有铁电性, 也就是说要有 非对称中心. 因此似乎只要能破坏中心对称的磁性 结构应该都会产生一定的铁电性. 接下来的理论和 实验工作一方面应该在上述已知的框架下寻找新的 材料, 另一方面也需要寻找新的能破坏中心对称的 磁性结构或磁性材料. 另外, 自然界有一类铁电体是 含质子的化合物, 包括一些磷酸盐, 甚至含结晶水.

其铁电性的产生是由于质子在两个能量等价位置来 回隧穿, 从而形成电偶极矩. 我们称之为质子型铁电 体. 目前还没有对这类铁电体做多铁研究. 所以将多 铁性推广到这类系统应该是创新性的.

(2) 电荷有序相导致的铁电性中也存在很多问 题. 这一机制首先还只有一个简单的物理图像, 即使 定性的描述也还没有统一的认识. 而正如文中所述, 虽 然理论分析预言 Pr1−xCaxMnO3和 Pr(Sr0.1Ca0.9)2Mn2O7

中存在铁电性, 但迄今为止实验上还未能直接观测 到铁电性, 所以这两类材料是否是铁电体也还有待进 一步的研究. 对 LuFe2O4中非中心对称的电荷有序相导 致电偶极矩和净极化的出现的机制还没有明确的认识.

我们知道, 在 Pr1−xCaxMnO3和 Pr(Sr0.1Ca0.9)2Mn2O7中 存在各种能量尺度上接近的相互作用的竞争, 可以 说正是这种竞争导致了锰氧化物中两种电荷有序相 (格点中心和键中心电荷有序相)的竞争共存和净极 化的出现. 从这一点上看, 我们认为在 LuFe2O4系统中 应该也存在各种相互作用和电荷有序相的竞争共存, 而这类竞争对其铁电性以及庞磁电容(介电)效应应该 起了重要作用. 对它的理论描述应该注意这一点.

(3) 多铁性系统中的复杂元激发的问题. 按照凝 聚态物理学的基本原理, 在多铁性材料中应该存在 元激发. 但文中所述的电磁振子还存在很多问题和 争议. 多铁性系统中同铁电性和磁性相耦合的复杂 元激发, 从基本的定义到具体的表现都还需要更进 一步的研究.

(4) 虽然已经发现了若干多铁性材料, 但其中大 部分材料的磁化和铁电极化都很小. 例如, 铁电极化 比典型的铁电材料要小一到两个数量级, 这样小的 铁电性无法付诸实际应用. 而其磁序一般表现为反 铁磁性或弱磁性, 也严重阻碍实际应用. 更为严重的 是, 目前发现的多铁性材料绝大部分只在极低温下 才表现出铁电性和磁性的共存, 这给实际应用带来 了巨大的困难. 目前迫切需要寻找室温下表现出较 大磁矩和铁电极化的材料. 一方面要深入研究现有 机制, 探讨现有机制下室温多铁性出现的可能性; 另 一方面也还需要寻找新的多铁性的机制.

(5) 多铁性系统中铁电性和磁性之间的互相调 控问题是多铁研究的本征问题. 虽然在一些多铁性 材 料 中 已 经 发 现 磁 场 导 致 电 极 化 方 向 改 变 的 效 应, 但只有极少数材料表现出磁场导致电极化反向的过 程, 而这一过程在实用中有很大的优点. 另一方面, 相反过程—— 电场对系统磁化的影响, 也只在极少数 材料中被发现, 而且效应也不显著. 因此需要寻找存在 铁电性和磁性之间互相调控更加显著的材料, 这也需 要寻找新的多铁性以及铁电性与磁性之间互相调控的

机制. 日本东京大学Tokura教授参照庞磁电阻锰氧化 物中在双量子临界点附近可以实现很大的庞磁电阻效 应这一思路, 提出在多铁性系统中, 也可以在多铁性 (铁电性)到顺电相的双临界点附近的体系中, 应该也能 得到很大的铁电性与磁性之间的调控效应 [8]. 我们 认为, 系统中显著的各种性质间的调控效应需要能量 尺度上接近的多种相互作用间的相互竞争, 寻找铁电 性和磁性之间显著的互相调控也应该从这方面着手.

(6) 人工结构中的多铁性问题. 由于实验技术的 不断提高, 目前凝聚态物理学和材料科学研究领域 更多地拓展到各种人工结构, 诸如超晶格等的制备 和物理性质研究. 人工结构材料可以不受一些自然 条件的限制, 表现出一些新的物理现象. 例如, 已经 有人提出在Fe/BaTiO3超晶格结构中可以实现电场对

磁化的调控[127]. 而采用三种不同的材料, 如LaAlO3/ La0.6Sr0.4MnO3/SrTiO3的超晶格结构可以在界面处得 到铁电极化 [128,129], 但其中的物理机制还远不清楚.

可以预期在人工结构材料中将会得到新的多铁性系 统以及磁性和铁电性之间调控的新机制.

(7) 铁性磁涡旋系统的研究. 关于铁性磁涡旋系统 目前还存在很大的争议. 首先, 是否将其作为一种基本 的铁性还存在争议. 而更为基本的这类系统的定义也 还没有完全确定[130]. 铁性磁涡旋系统与多铁性系统的 关系及其在实验上的特性也还需要更多的研究来表征.

总的来说, 由于多铁性材料中同时存在铁电性 和磁性, 使得这一体系有很大的应用前景, 得到了很 大的重视. 这一体系的研究也必然推动对铁电性、磁 性以及强关联电子体系的研究.

致谢 本文的撰写得到南京大学闵乃本教授和邢定钰教授的指导. 清华大学南策文教授、中国科学技术大学李晓光教 授、浙江大学陈湘明教授等对本文的撰写也给予了很大支持. 在此一并表示感谢!

参考文献

1 Ziese M, Tohornton M J. Spin Electronics. Berlin: Springer, 2001 2 Prinz G A. Magnetoelectronics. Science, 1998, 282: 1660-1661[DOI]

3 Wolf S A, Awschalom D D, Buhrman R A, et al. Spintronics: A spin-based electronics vision for the future. Science, 2001, 294: 1488—

1490[DOI]

4 Zutic I, Fabian J, Das Sarma S. Spintronics: Fundamentals and applications. Rev Mod Phys, 2004, 76: 323-410[DOI]

5 Lines M E, Glass A. Principle and Application of Ferroelectric and Related Materials. Oxford: Oxford University Press, 2001 6 Scott J F. Ferroelectric Memories. Berlin: Springer-Verlag, 2000

7 TokuraY. Multiferroics as quantum electromagnetic. Science, 2006, 312: 1481—1482[DOI]

8 Tokura Y. Multiferroics—toward strong coupling between magnetization and polarization in a solid. J Magn Magn Mater, 2007, 310:

1145—1150[DOI]

9 Eerenstein W, Mathur N D, Scott J F. Multiferroic and magnetoelectric materials. Nature, 2006, 442: 759-765[DOI]

10 Khomskii D I. Multiferroics: Different ways to combine magnetism and ferroelectricity. J Magn Magn Mater, 2006, 306: 1-8[DOI]

11 迟振华, 靳常青. 单相磁电多铁性体研究进展. 物理学进展, 2007, 27: 225-238

12 Cheong S W, Mostovoy M. Multiferroics: A magnetic twist for ferroelectricity. Nature Mater, 2007, 6: 13-20[DOI]

13 Ramesh R, Spaldin A N. Multiferroics: Progress and prospects in thin films. Nature Mater, 2007, 6: 21-29[DOI]

14 Schmid H. Magnetic ferroelectric materials. Bull Mater Sci, 2007, 17: 1411—1414[DOI]

15 Freeman A J, Schmid H. Magnetoelectric Interaction Phenomena in Crystals. London: Gordon and Breach, 1995 16 Spaldin N A, Fiebig M. The renaissance of magnetoelectric multiferroics. Science, 2005, 309: 391—392[DOI]

17 Rado G T, Folen V. Observation of the magnetically induced magnetoelectric effect and evidence for antiferromagnetic domains.

Phys Rev Lett, 1961, 7: 310-311

18 Fiebig M. Revival of the magnetoelectric effect. J Phys D: Appl Phys, 2005, 38: R123-R152[DOI]

19 Zeng M, Wan J G, Wang Y, et al. Resonance magnetoelectric effect in bulk composites of lead zirconate titanate and nickel ferrite. J Appl Phys, 2004, 95: 8069-8073[DOI]

20 Dong S X, Li J F, Viehland D. Vortex magnetic field sensor based on ring-type magnetoelectric laminate. Appl Phys Lett, 2004, 85:

2307-2309[DOI]

21 Cai N, Nan C W, Zhai J Y, et al. Large high-frequency magnetoelectric response in laminated composites of piezoelectric ceramics, rare-earth iron alloys and polymer. Appl Phys Lett, 2004, 84: 3516-3518[DOI]

22 Nan C W, Li M, Huang J H. Calculations of giant magnetoelectric effects in ferroic composites of rare-earth-iron alloys and

ferroelec-tric polymers. Phys Rev B, 2001, 63: 144415-144423[DOI]

23 Dong S X, Cheng J R, Li J F, et al. Enhanced magnetoelectric effects in laminate composites of Terfenol-D/Pb(Zr,Ti)O3 under reso-nant drive. Appl Phys Lett, 2003, 83: 4812-4814[DOI]

24 Zhang H, Wang J, Lofland S E, et al. Multiferroic BaTiO3-CoFe2O4 nanostructure. Science, 2003, 83: 4812—4814 25 Schmid H. Multi-ferroic magnetoelectrics. Ferroelectrics, 1994, 162: 317—338[DOI]

26 Cohen R E. Origin of ferroelectricity in perovskite oxides. Nature, 1992, 358: 136-138[DOI]

27 Levitin R Z. The magnetoelectric properties of GdFe3(BO3)4. JETP Lett, 2004, 79: 531[DOI]

28 Ascher E, Rieder H, Schmid H, et al. Some properties of ferromagnetoelectric Nickel-Iodine Boracite, Ni3B7O13I. Appl Phys Lett, 1966, 37: 1404-1405

29 Smolenskii G A, Chupis I E. Ferroelectromagnetis. Usp Fiz Nauk, 1982, 137: 415-448

30 Ivanov S A, Rundlof H. Investigation of the structure of the relaxor ferroelectric Pb(Fe1/2Nb1/2)O3 by neutron powder diffraction. J Phys: Cond Matt, 2000, 12: 2393—2400[DOI]

31 Brunskill I H, Depmeier W. High temperature solution growth of Pb(Fe1/2Nb1/2)O3 and Pb(Mn1/2Nb1/2)O3. J Cryst Growth, 1981, 56:

541—546[DOI]

32 Vokov V A. Ferroelectric antiferromagnetics. Sov Phys JETP, 1962, 15: 447—451

33 Yan L, Li J F, Viehland D. Deposition conditions and electrical properties of relaxor ferroelectric Pb(Fe1/2Nb1/2)O3 thin films pre-pared by pulsed laser deposition. J Appl Phys, 2007, 101: 104107[DOI]

34 Kimura T, Kawamoto S, Yamada I, et al. Magnetocapacitance effect in multiferroic BiMnO3. Phys Rev B, 2003, 67: 180401[DOI]

35 Yang Y, Liu J M, Huang H B, et al. Magnetoelectric coupling in ferroelectromagnet Pb(Fe1/2Nb1/2)O3 single crystals. Phys Rev B, 2004, 70:

132101[DOI]

36 Wongmaneerung R, Tan X, McCallum R W, et al. Synthesis and multiferroic properties of Bi0.8A0.2FeO3 (A=Ca,Sr,Pb) ceramics. Appl Phys Lett, 2007, 90: 242901[DOI]

37 Trinquier G, Hoffman J R. Lead monoxide. Electronic structure and bonding. J Phys Chem, 1984, 88: 6696-6711[DOI]

38 Waston G W, Parker S C. Ab initio calculation of the origin of the distortion of α-PbO. Phys Rev B, 1999, 59: 8481-8486[DOI]

39 Seshadri R, Hill N A. Visualizing the role of Bi 6s “Lone Pairs” in the off-center distortion in ferromagnetic BiMnO3. Chem Mater, 2001, 13: 2892-2899[DOI]

40 Aton T, Chiba H, Ohoyama K. Structure determination of ferromagnetic perovskite BiMnO3. J Solid State Chem, 1999, 145: 639—

642[DOI]

41 Kimura T, Kawamoto S, Yamada I, et al. Magnetocapacitance effect in multiferroic BiMnO3. Phys Rev B, 2003, 67: 180401[DOI]

42 Smolenskii G A, Chupis I. Ferroelectromagnets. Sov Phys Usp, 1982, 25: 475-493[DOI]

43 Fischer P, Sosnowska I. Temperature dependence of the crystal and magnetic structure of BiFeO3. J Phys C, 1980, 13: 1931[DOI]

44 Sosnowska T, Peterlin N. Spiral magnetic ordering in bismuth ferrote. J Phys C, 1982, 15: 4835[DOI]

45 Lebeugle D, Colson D, Forget A, et al. Very large spontaneous electric polarization in BiFeO3 single crystals at room temperature and its evolution under cycling fields. Appl Phys Lett, 2007, 91: 022907[DOI]

46 Wang Y P, Zhou L, Zhang M F, et al. Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering. Appl Phys Lett, 2004, 84: 1731[DOI]

47 Yuan G L, Or S W, Liu J M, et al. Structural transformation and ferroelectromagnetic behavior in single-phase Bi1–xNdxFeO3 mul-tiferroic ceramics. Appl Phys Lett, 2007, 89: 052905[DOI]

48 Yuan G L, Or S W, Chan H L W, et al. Reduced ferroelectric coercivity in multiferroic Bi0.825Nd0.175FeO3 thin film. J Appl Phys 2007, 101: 024106[DOI]

49 Gao F, Cai C, Wang Y, et al. Preparation of La-doped BiFeO3 thin films with Fe2+ ions on Si substrates. J Appl Phys, 2006, 99:

094105[DOI]

50 Zhang S T, Lu M H, Wu D, et al. Larger polarization and weak ferromagnetism in quenched BiFeO3 ceramics with a distorted rhom-bohedral crystal structure. Appl Phys Lett, 2005, 87: 262907[DOI]

51 Wang J, Neaton J B, Zheng H, et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science, 2003, 299: 17190-1722 52 Mazumder R, Sujatha Devi P, Bhattacharya D, et al. Ferromagnetism in nanoscale BiFeO3. Appl Phys Lett, 2007, 91: 062510[DOI]

53 Gao F, Chen X Y, Yin K B, et al. Visible-light photocatalytic properties of weak magnetic BiFeO3 nanoparticles. Adv Mater, 2007, 19:

2889-2891[DOI]

54 Zavaliche F, Shafer P, Ramesh R, et al. Polarization switching in epitaxial BiFeO3 films. Appl Phys Lett, 2005, 87: 252902[DOI]

55 Zavaliche F, Das R R, Kim D M, et al. Colossal dielectric and electromechanical responses in self-assembled polymeric nanocompo-sites. Appl Phys Lett, 2005, 87: 182901[DOI]

56 Zhao T, Scholl A, Zavaliche F, et al. Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature.

Nature Mater, 2006, 5: 823-829[DOI]

57 Tsai M H, Tsang Y H, Dey S K. Co-existence of ferroelectricity and ferromagnetism in 1.4 nm SrBi2Ta2O11 film. J Phys: Cond Matter, 2005, 15: 7901-7915[DOI]

58 Goodenough J B. Magnetism and Chemical Bonds. New York: Wiley, 1963

59 Ueda K, Tabata H, Kawai T. Ferromagnetism in LaFeO3-LaCrO3 superlattices. Science, 1998, 280: 1064-1066[DOI]

60 Baettig P, Ederer C, Spaldin N A. First principles study of the multiferroics BiFeO3, Bi2FeCrO6, and BiCrO3: Structure, polarization, and magnetic ordering temperature. Phys Rev B, 2005, 72: 214105[DOI]

61 Kim D H, Lee H N, Biegalski M D, et al. Large ferroelectric polarization in antiferromagnetic BiFe0.5Cr0.5O3 epitaxial films. Appl Phys Lett, 2007, 91: 042906[DOI]

62 Martin L W, Zhan Q, Suzuki Y, et al. Growth and structure of PbVO3 thin films. Appl Phys Lett, 2007, 90: 062903[DOI]

63 Bertaur E F, Pauthenet R, Mercier M. Structure and magnetic properties of YMnO3. Phys Lett, 1963, 7: 110 64 Filipetti A, Hill N A. Why are there any magnetic ferroelectrics? J Magn Magn Mater, 2002, 242-245: 976-979[DOI]

65 Van Aken B, Palstra T T M, Filipetti A, et al. The origin of ferroelectricity in magnetoelectric YMnO3. Nature Mater, 2004, 3: 164-

170[DOI]

66 Cho D Y, Kim J Y, Park B G, et al. Ferroelectricity driven by Y d0-ness with rehybridization in YMnO3. Phys Rev Lett, 2007, 98:

217601[DOI]

67 Fiebig M, Lottermoser Th, Frohlich D, et al. Observation of coupled magnetic and electric domains. Nature, 2002, 419: 818-820[DOI]

68 Lottermoser T, Lonkai T, Amann U, et al. Magnetic phase control by an electric field. Nature, 2004, 430: 541[DOI]

69 Abrahams S C. Hexagonal YMnO3. Acta Cryst B, 2001, 57: 845—847[DOI]

70 Katsufuji T. Dielectric and magnetic anomalies and spin frustration in hexagonal RMnO3 (R=Y, Yb, and Lu). Phys Rev B, 2001, 64:

104419[DOI]

71 Lee J H, Murugavel P, Ryu H, et al. Epitaxial stabilization of a new multiferroic hexagonal phase of TbMnO3 thin films. Adv Mater, 2006, 18: 3125-3129[DOI]

72 Bursill P. Numerical and approximate analytical results for the frustrated spin-1/2 quantum spin chain. J Phys: Cond Matter, 1995, 7:

8605-8618[DOI]

73 Sergienko J A, Dagotto E. Role of the Dzyaloshinskii-Moriya interaction in multiferroic perovskites. Phys Rev B, 2006, 73: 094434[DOI]

74 Katasura H, Nagaosa N, Balatsky A. Spin current and magnetoelectric effect in noncollinear magnets. Phys Rev Lett, 2005, 95: 057205[DOI]

75 Dzyaloshirskil I. Theory of helical structures in antiferromagnets I: Nonmetals. Sov Phys JETP, 1964, 19: 960-971 76 Moriya T. Anisotropic superexchange interaction and weak ferromagnetism. Phys Rev, 1960, 120: 91-98

77 Cheong S W, Thompson J D, Fish Z. Metamagnetism in La2CuO4. Phys Rev B, 1989, 39: 4395-4398[DOI]

78 Park S, Choi Y J, Zhang C L, et al. Ferroelectricity in an S=1/2 chain cuprate. Phys Rev Lett, 2007, 98: 057601[DOI]

79 Masuda T, Zheludev A, Bush A, et al. Competition between helimagnetism and commensurate quantum spin correlations in LiCu2O2. Phys Rev Lett, 2004, 92: 177201[DOI]

80 Drechsler S L, Malek J, Richter J, et al. Comment on “Competition between helimagnetism and commensurate quantum spin correla-tions in LiCu2O2”. Phys Rev Lett, 2005, 94: 039705[DOI]

81 Masuda T, Zheludev A, Roessli B, et al. Spin waves and magnetic interactions in LiCu2O2.Phys Rev B, 2005, 72: 014405[DOI]

82 Seki S, Yamasaki Y, Shiomi Y, et al. Impurity-doping-induced ferroelectricity in the frustrated antiferromagnet CuFeO2. Phys Rev B, 2007, 75: 100403(R) [DOI]

83 Kimura T, Lashley J C, Ramirez A. Inversion-symmetry breaking in the noncollinear magnetic phase of the triangular-lattice anti-ferromagnet CuFeO2. Phys Rev B, 2006, 73: 220401(R)

84 Ye F, Fernandez-Baca A, Fishman R S, et al. Magnetic interactions in the geometrically frustrated triangular lattice antiferromagnet CuFeO2. Phys Rev Lett, 2007, 99: 157201[DOI]

85 Lawes G, Kenzelamnn M, Rogada N, et al. Competing magnetic phases on a kagomé staircase. Phys Rev Lett, 2004, 93: 247201[DOI]

86 Lawes G, Harris A B, Kimura T, et al. Magnetically driven ferroelectric order in Ni3V2O8.Phys Rev Lett, 2005, 95: 087205[DOI]

87 Kimura T, Goto T, Shintani H, et al. Magnetic control of ferroelectric polarization. Nature, 2003, 426: 55-58[DOI]

88 Goto T, Lawes G, Ramirez A P, et al. Electricity and giant magnetocapacitance in perovskite rare-earth manganites. Phys Rev Lett, 2004, 92: 257201[DOI]

89 Arima T, Goto T, Yamasaki Y, et al. Magnetic-field-induced transition in the lattice modulation of colossal magnetoelectric GdMnO3

and TbMnO3 compounds. Phys Rev B, 2005, 72: 100102(R)

90 Hemberger J, Schrettle F, Pimenov A, et al. Multiferroic phases of Eu1−xYxMnO3.Phys Rev B, 2006, 75: 035118[DOI]

91 Yamosoki Y, Sagayama H, Goto T, et al. Electric control of spin helicity in a magnetic ferroelectric. Phys Rev Lett, 2007, 98: 147204[DOI]

92 Taniguchi K, Abe N, Takenobu T, et al. Ferroelectric polarization flop in a frustrated magnet MnWO4 induced by a magnetic field.

Phys Rev Lett, 2006, 97: 097203[DOI]

93 Kimira T, Lawes G, Ramirez A P. Electric polarization rotation in a hexaferrite with long-wavelength magnetic structures. Phys Rev Lett, 2005, 94: 137201[DOI]

94 Hemberger J H, Lunkenheimer P, Fichtl R, et al. Relaxor ferroelectricity and colossal magnetocapacitive coupling in ferromagnetic CdCr2S4. Nature, 2005, 434: 364-367[DOI]

相關文件