• 沒有找到結果。

近几年对多铁性材料的研究热潮导致对多铁性 物理的深刻理解并成功探索可能的应用. 相继发现 一些新的多铁性材料以及观测到很强的铁电/磁性耦 合或调控效应, 一些物理新机制也被提出来解释多 铁性及其中的效应. 然而, 相比于研究工作取得的成 果, 所揭示的问题和挑战似乎更多. 我们进行一些初 步的归纳, 虽然未必全面, 却希望可以引发更广泛和 深入的实验和理论研究工作:

(1) 多铁性—— 铁电性和磁性共存机制问题. 虽 然目前发现了如上所述的几种机制来实现铁电性和 磁性在单相材料中共存, 但其中仍然存在很多问题, 尤其是在螺旋状自旋序导致的多铁性系统中还有很 多基本问题. 首先, 螺旋状自旋序导致铁电性的微观 机制还没得到真正的解决. DM 相互作用是否是最重

1131

机制. 日本东京大学Tokura教授参照庞磁电阻锰氧化

1 Ziese M, Tohornton M J. Spin Electronics. Berlin: Springer, 2001 2 Prinz G A. Magnetoelectronics. Science, 1998, 282: 1660-1661[DOI]

3 Wolf S A, Awschalom D D, Buhrman R A, et al. Spintronics: A spin-based electronics vision for the future. Science, 2001, 294: 1488—

1490[DOI]

4 Zutic I, Fabian J, Das Sarma S. Spintronics: Fundamentals and applications. Rev Mod Phys, 2004, 76: 323-410[DOI]

5 Lines M E, Glass A. Principle and Application of Ferroelectric and Related Materials. Oxford: Oxford University Press, 2001 6 Scott J F. Ferroelectric Memories. Berlin: Springer-Verlag, 2000

7 TokuraY. Multiferroics as quantum electromagnetic. Science, 2006, 312: 1481—1482[DOI]

8 Tokura Y. Multiferroics—toward strong coupling between magnetization and polarization in a solid. J Magn Magn Mater, 2007, 310:

1145—1150[DOI]

9 Eerenstein W, Mathur N D, Scott J F. Multiferroic and magnetoelectric materials. Nature, 2006, 442: 759-765[DOI]

10 Khomskii D I. Multiferroics: Different ways to combine magnetism and ferroelectricity. J Magn Magn Mater, 2006, 306: 1-8[DOI]

11 迟振华, 靳常青. 单相磁电多铁性体研究进展. 物理学进展, 2007, 27: 225-238

12 Cheong S W, Mostovoy M. Multiferroics: A magnetic twist for ferroelectricity. Nature Mater, 2007, 6: 13-20[DOI]

13 Ramesh R, Spaldin A N. Multiferroics: Progress and prospects in thin films. Nature Mater, 2007, 6: 21-29[DOI]

14 Schmid H. Magnetic ferroelectric materials. Bull Mater Sci, 2007, 17: 1411—1414[DOI]

15 Freeman A J, Schmid H. Magnetoelectric Interaction Phenomena in Crystals. London: Gordon and Breach, 1995 16 Spaldin N A, Fiebig M. The renaissance of magnetoelectric multiferroics. Science, 2005, 309: 391—392[DOI]

17 Rado G T, Folen V. Observation of the magnetically induced magnetoelectric effect and evidence for antiferromagnetic domains.

Phys Rev Lett, 1961, 7: 310-311

18 Fiebig M. Revival of the magnetoelectric effect. J Phys D: Appl Phys, 2005, 38: R123-R152[DOI]

19 Zeng M, Wan J G, Wang Y, et al. Resonance magnetoelectric effect in bulk composites of lead zirconate titanate and nickel ferrite. J Appl Phys, 2004, 95: 8069-8073[DOI]

20 Dong S X, Li J F, Viehland D. Vortex magnetic field sensor based on ring-type magnetoelectric laminate. Appl Phys Lett, 2004, 85:

2307-2309[DOI]

21 Cai N, Nan C W, Zhai J Y, et al. Large high-frequency magnetoelectric response in laminated composites of piezoelectric ceramics, rare-earth iron alloys and polymer. Appl Phys Lett, 2004, 84: 3516-3518[DOI]

22 Nan C W, Li M, Huang J H. Calculations of giant magnetoelectric effects in ferroic composites of rare-earth-iron alloys and

1133 tric polymers. Phys Rev B, 2001, 63: 144415-144423[DOI]

23 Dong S X, Cheng J R, Li J F, et al. Enhanced magnetoelectric effects in laminate composites of Terfenol-D/Pb(Zr,Ti)O3 under reso-nant drive. Appl Phys Lett, 2003, 83: 4812-4814[DOI]

24 Zhang H, Wang J, Lofland S E, et al. Multiferroic BaTiO3-CoFe2O4 nanostructure. Science, 2003, 83: 4812—4814 25 Schmid H. Multi-ferroic magnetoelectrics. Ferroelectrics, 1994, 162: 317—338[DOI]

26 Cohen R E. Origin of ferroelectricity in perovskite oxides. Nature, 1992, 358: 136-138[DOI]

27 Levitin R Z. The magnetoelectric properties of GdFe3(BO3)4. JETP Lett, 2004, 79: 531[DOI]

28 Ascher E, Rieder H, Schmid H, et al. Some properties of ferromagnetoelectric Nickel-Iodine Boracite, Ni3B7O13I. Appl Phys Lett, 1966, 37: 1404-1405

29 Smolenskii G A, Chupis I E. Ferroelectromagnetis. Usp Fiz Nauk, 1982, 137: 415-448

30 Ivanov S A, Rundlof H. Investigation of the structure of the relaxor ferroelectric Pb(Fe1/2Nb1/2)O3 by neutron powder diffraction. J Phys: Cond Matt, 2000, 12: 2393—2400[DOI]

31 Brunskill I H, Depmeier W. High temperature solution growth of Pb(Fe1/2Nb1/2)O3 and Pb(Mn1/2Nb1/2)O3. J Cryst Growth, 1981, 56:

541—546[DOI]

32 Vokov V A. Ferroelectric antiferromagnetics. Sov Phys JETP, 1962, 15: 447—451

33 Yan L, Li J F, Viehland D. Deposition conditions and electrical properties of relaxor ferroelectric Pb(Fe1/2Nb1/2)O3 thin films pre-pared by pulsed laser deposition. J Appl Phys, 2007, 101: 104107[DOI]

34 Kimura T, Kawamoto S, Yamada I, et al. Magnetocapacitance effect in multiferroic BiMnO3. Phys Rev B, 2003, 67: 180401[DOI]

35 Yang Y, Liu J M, Huang H B, et al. Magnetoelectric coupling in ferroelectromagnet Pb(Fe1/2Nb1/2)O3 single crystals. Phys Rev B, 2004, 70:

132101[DOI]

36 Wongmaneerung R, Tan X, McCallum R W, et al. Synthesis and multiferroic properties of Bi0.8A0.2FeO3 (A=Ca,Sr,Pb) ceramics. Appl Phys Lett, 2007, 90: 242901[DOI]

37 Trinquier G, Hoffman J R. Lead monoxide. Electronic structure and bonding. J Phys Chem, 1984, 88: 6696-6711[DOI]

38 Waston G W, Parker S C. Ab initio calculation of the origin of the distortion of α-PbO. Phys Rev B, 1999, 59: 8481-8486[DOI]

39 Seshadri R, Hill N A. Visualizing the role of Bi 6s “Lone Pairs” in the off-center distortion in ferromagnetic BiMnO3. Chem Mater, 2001, 13: 2892-2899[DOI]

40 Aton T, Chiba H, Ohoyama K. Structure determination of ferromagnetic perovskite BiMnO3. J Solid State Chem, 1999, 145: 639—

642[DOI]

41 Kimura T, Kawamoto S, Yamada I, et al. Magnetocapacitance effect in multiferroic BiMnO3. Phys Rev B, 2003, 67: 180401[DOI]

42 Smolenskii G A, Chupis I. Ferroelectromagnets. Sov Phys Usp, 1982, 25: 475-493[DOI]

43 Fischer P, Sosnowska I. Temperature dependence of the crystal and magnetic structure of BiFeO3. J Phys C, 1980, 13: 1931[DOI]

44 Sosnowska T, Peterlin N. Spiral magnetic ordering in bismuth ferrote. J Phys C, 1982, 15: 4835[DOI]

45 Lebeugle D, Colson D, Forget A, et al. Very large spontaneous electric polarization in BiFeO3 single crystals at room temperature and its evolution under cycling fields. Appl Phys Lett, 2007, 91: 022907[DOI]

46 Wang Y P, Zhou L, Zhang M F, et al. Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering. Appl Phys Lett, 2004, 84: 1731[DOI]

47 Yuan G L, Or S W, Liu J M, et al. Structural transformation and ferroelectromagnetic behavior in single-phase Bi1–xNdxFeO3 mul-tiferroic ceramics. Appl Phys Lett, 2007, 89: 052905[DOI]

48 Yuan G L, Or S W, Chan H L W, et al. Reduced ferroelectric coercivity in multiferroic Bi0.825Nd0.175FeO3 thin film. J Appl Phys 2007, 101: 024106[DOI]

49 Gao F, Cai C, Wang Y, et al. Preparation of La-doped BiFeO3 thin films with Fe2+ ions on Si substrates. J Appl Phys, 2006, 99:

094105[DOI]

50 Zhang S T, Lu M H, Wu D, et al. Larger polarization and weak ferromagnetism in quenched BiFeO3 ceramics with a distorted rhom-bohedral crystal structure. Appl Phys Lett, 2005, 87: 262907[DOI]

51 Wang J, Neaton J B, Zheng H, et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science, 2003, 299: 17190-1722 52 Mazumder R, Sujatha Devi P, Bhattacharya D, et al. Ferromagnetism in nanoscale BiFeO3. Appl Phys Lett, 2007, 91: 062510[DOI]

53 Gao F, Chen X Y, Yin K B, et al. Visible-light photocatalytic properties of weak magnetic BiFeO3 nanoparticles. Adv Mater, 2007, 19:

2889-2891[DOI]

54 Zavaliche F, Shafer P, Ramesh R, et al. Polarization switching in epitaxial BiFeO3 films. Appl Phys Lett, 2005, 87: 252902[DOI]

55 Zavaliche F, Das R R, Kim D M, et al. Colossal dielectric and electromechanical responses in self-assembled polymeric nanocompo-sites. Appl Phys Lett, 2005, 87: 182901[DOI]

56 Zhao T, Scholl A, Zavaliche F, et al. Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature.

Nature Mater, 2006, 5: 823-829[DOI]

57 Tsai M H, Tsang Y H, Dey S K. Co-existence of ferroelectricity and ferromagnetism in 1.4 nm SrBi2Ta2O11 film. J Phys: Cond Matter, 2005, 15: 7901-7915[DOI]

58 Goodenough J B. Magnetism and Chemical Bonds. New York: Wiley, 1963

59 Ueda K, Tabata H, Kawai T. Ferromagnetism in LaFeO3-LaCrO3 superlattices. Science, 1998, 280: 1064-1066[DOI]

60 Baettig P, Ederer C, Spaldin N A. First principles study of the multiferroics BiFeO3, Bi2FeCrO6, and BiCrO3: Structure, polarization, and magnetic ordering temperature. Phys Rev B, 2005, 72: 214105[DOI]

61 Kim D H, Lee H N, Biegalski M D, et al. Large ferroelectric polarization in antiferromagnetic BiFe0.5Cr0.5O3 epitaxial films. Appl Phys Lett, 2007, 91: 042906[DOI]

62 Martin L W, Zhan Q, Suzuki Y, et al. Growth and structure of PbVO3 thin films. Appl Phys Lett, 2007, 90: 062903[DOI]

63 Bertaur E F, Pauthenet R, Mercier M. Structure and magnetic properties of YMnO3. Phys Lett, 1963, 7: 110 64 Filipetti A, Hill N A. Why are there any magnetic ferroelectrics? J Magn Magn Mater, 2002, 242-245: 976-979[DOI]

65 Van Aken B, Palstra T T M, Filipetti A, et al. The origin of ferroelectricity in magnetoelectric YMnO3. Nature Mater, 2004, 3: 164-

170[DOI]

66 Cho D Y, Kim J Y, Park B G, et al. Ferroelectricity driven by Y d0-ness with rehybridization in YMnO3. Phys Rev Lett, 2007, 98:

217601[DOI]

67 Fiebig M, Lottermoser Th, Frohlich D, et al. Observation of coupled magnetic and electric domains. Nature, 2002, 419: 818-820[DOI]

68 Lottermoser T, Lonkai T, Amann U, et al. Magnetic phase control by an electric field. Nature, 2004, 430: 541[DOI]

69 Abrahams S C. Hexagonal YMnO3. Acta Cryst B, 2001, 57: 845—847[DOI]

70 Katsufuji T. Dielectric and magnetic anomalies and spin frustration in hexagonal RMnO3 (R=Y, Yb, and Lu). Phys Rev B, 2001, 64:

104419[DOI]

71 Lee J H, Murugavel P, Ryu H, et al. Epitaxial stabilization of a new multiferroic hexagonal phase of TbMnO3 thin films. Adv Mater, 2006, 18: 3125-3129[DOI]

72 Bursill P. Numerical and approximate analytical results for the frustrated spin-1/2 quantum spin chain. J Phys: Cond Matter, 1995, 7:

8605-8618[DOI]

73 Sergienko J A, Dagotto E. Role of the Dzyaloshinskii-Moriya interaction in multiferroic perovskites. Phys Rev B, 2006, 73: 094434[DOI]

74 Katasura H, Nagaosa N, Balatsky A. Spin current and magnetoelectric effect in noncollinear magnets. Phys Rev Lett, 2005, 95: 057205[DOI]

75 Dzyaloshirskil I. Theory of helical structures in antiferromagnets I: Nonmetals. Sov Phys JETP, 1964, 19: 960-971 76 Moriya T. Anisotropic superexchange interaction and weak ferromagnetism. Phys Rev, 1960, 120: 91-98

77 Cheong S W, Thompson J D, Fish Z. Metamagnetism in La2CuO4. Phys Rev B, 1989, 39: 4395-4398[DOI]

78 Park S, Choi Y J, Zhang C L, et al. Ferroelectricity in an S=1/2 chain cuprate. Phys Rev Lett, 2007, 98: 057601[DOI]

79 Masuda T, Zheludev A, Bush A, et al. Competition between helimagnetism and commensurate quantum spin correlations in LiCu2O2. Phys Rev Lett, 2004, 92: 177201[DOI]

80 Drechsler S L, Malek J, Richter J, et al. Comment on “Competition between helimagnetism and commensurate quantum spin correla-tions in LiCu2O2”. Phys Rev Lett, 2005, 94: 039705[DOI]

81 Masuda T, Zheludev A, Roessli B, et al. Spin waves and magnetic interactions in LiCu2O2.Phys Rev B, 2005, 72: 014405[DOI]

82 Seki S, Yamasaki Y, Shiomi Y, et al. Impurity-doping-induced ferroelectricity in the frustrated antiferromagnet CuFeO2. Phys Rev B, 2007, 75: 100403(R) [DOI]

83 Kimura T, Lashley J C, Ramirez A. Inversion-symmetry breaking in the noncollinear magnetic phase of the triangular-lattice anti-ferromagnet CuFeO2. Phys Rev B, 2006, 73: 220401(R)

84 Ye F, Fernandez-Baca A, Fishman R S, et al. Magnetic interactions in the geometrically frustrated triangular lattice antiferromagnet CuFeO2. Phys Rev Lett, 2007, 99: 157201[DOI]

85 Lawes G, Kenzelamnn M, Rogada N, et al. Competing magnetic phases on a kagomé staircase. Phys Rev Lett, 2004, 93: 247201[DOI]

86 Lawes G, Harris A B, Kimura T, et al. Magnetically driven ferroelectric order in Ni3V2O8.Phys Rev Lett, 2005, 95: 087205[DOI]

87 Kimura T, Goto T, Shintani H, et al. Magnetic control of ferroelectric polarization. Nature, 2003, 426: 55-58[DOI]

88 Goto T, Lawes G, Ramirez A P, et al. Electricity and giant magnetocapacitance in perovskite rare-earth manganites. Phys Rev Lett, 2004, 92: 257201[DOI]

89 Arima T, Goto T, Yamasaki Y, et al. Magnetic-field-induced transition in the lattice modulation of colossal magnetoelectric GdMnO3

and TbMnO3 compounds. Phys Rev B, 2005, 72: 100102(R)

90 Hemberger J, Schrettle F, Pimenov A, et al. Multiferroic phases of Eu1−xYxMnO3.Phys Rev B, 2006, 75: 035118[DOI]

91 Yamosoki Y, Sagayama H, Goto T, et al. Electric control of spin helicity in a magnetic ferroelectric. Phys Rev Lett, 2007, 98: 147204[DOI]

92 Taniguchi K, Abe N, Takenobu T, et al. Ferroelectric polarization flop in a frustrated magnet MnWO4 induced by a magnetic field.

Phys Rev Lett, 2006, 97: 097203[DOI]

93 Kimira T, Lawes G, Ramirez A P. Electric polarization rotation in a hexaferrite with long-wavelength magnetic structures. Phys Rev Lett, 2005, 94: 137201[DOI]

94 Hemberger J H, Lunkenheimer P, Fichtl R, et al. Relaxor ferroelectricity and colossal magnetocapacitive coupling in ferromagnetic CdCr2S4. Nature, 2005, 434: 364-367[DOI]

1135 95 Weber S, Lunkenheimer P, Fichtl R, et al. Colossal magnetocapacitance and colossal magnetoresistance in HgCr2S4.Phys Rev Lett,

2006, 96: 157202[DOI]

96 Yamsaki Y, Miyasaka S, Kaneko Y, et al. Magnetic reversal of the ferroelectric polarization in a multiferroic spinel oxide. Phys Rev Lett, 2006, 96: 207204[DOI]

97 Lawes G, Melot B, Page K, et al. Dielectric anomalies and spiral magnetic order in CoCr2O4.Phys Rev B, 2006, 74: 024413[DOI]

98 Portengen T, Ostreich O, Sham L J. Theory of electronic ferroelectricity. Phys Rev B, 1996, 54: 017452[DOI]

99 Verwey E J, Haayman P W. Electronic conductivity and transition point of magnetite. Physica, 1941, 8: 979-982 100 Tokura Y, Nagaosa N. Orbital physics in transition-metal oxides. Science, 2000, 288: 462-468[DOI]

101 Ikeda N, Ohsumii H, Ohweda K, et al. Ferroelectricity from iron valence ordering in the charge-frustrated system LuFe2O4. Nature, 2005, 436: 1136-1138[DOI]

102 Zhang Y, Yang H X, Tian H F, et al. Charge-stripe order in the electronic ferroelectric LuFe2O4. Phys Rev Lett, 2007, 98: 247602[DOI]

103 Tokunaga Y, Lottenmoser T, Lee Y, et al. Rotation of orbital stripes and the consequent charge-polarized state in bilayer manganites.

Nature Mater, 2006, 5: 937-941[DOI]

104 Efremov D V, den Brirk J V, Khomoskii D I. Bond-versus site-centred ordering and possible ferroelectricity in manganites. Nature Mater, 2004, 3: 853-856[DOI]

105 Ederer C, Spaldin N A. Magnetoelectrics: A new route to magnetic ferroelectrics. Nature Mater, 2004, 3: 849-851[DOI]

106 Hur W, Park S, Sharma P A, et al. Electric polarization reversal and memory in a multiferroic material induced by magnetic fields.

Nature, 2004, 429: 392-395[DOI]

107 Chapon L C, Radaelli P G, Blake G R, et al. Ferroelectricity induced by acentric spin-density waves in YMn2O5. Phys Rev Lett, 2006, 96: 097601[DOI]

108 Anderson P W. Basic Notions in Condensed Matter Physics. New York: Westview Press, 1984

109 Bar’yakhtar V G, Chupis I E. Quantum theory of oscillations in a ferroelectric ferromagnet. Sov Phys Solid State, 1970, 11: 2628-

2631

110 Oimenov A, Mukhin A A, Yu Ivanov W, et al. Possible evidence for electromagnons in multiferroic manganites. Nature Phys, 2006, 2:

97-100[DOI]

111 Sushkov A B, Valdes Aguilar R, Park S, et al. Electromagnons in multiferroic YMn2O5 and TbMn2O5. Phys Rev Lett, 2007, 98: 027202[DOI]

112 Senff D, Link P, Hradil K, et al. Magnetic excitations in multiferroic TbMnO3: Evidence for a hybridized soft mode. Phys Rev Lett, 2007, 98: 137206[DOI]

113 Pimenov A, Rudolf T, Mayr F, et al. Coupling of phonons and electromagnons in GdMnO3. Phys Rev B, 2006, 74: 100403(R)

114 Valdes Aguilar R, Sushkov A B, Zhang C L, et al. Colossal magnon-phonon coupling in multiferroic Eu0.75Y0.25MnO3. Phys Rev B, 2007, 76: 060404(R) [DOI]

115 Ramesh R, Spaldin N A. Multiferroics: Progress and prospects in thin films. Nature Mater, 2007, 6: 21-29[DOI]

116 Marti X. Exchange biasing and electric polarization with YMnO3. Appl Phys Lett, 2006, 89: 032510[DOI]

117 Borisor P. Magnetoelectric switching of exchange bias. Phys Rev Lett, 2005, 94: 117203[DOI]

118 Lankhim V, Skuimryer V, Matri X, et al. Electric-field control of exchange bias in multiferroic epitaxial heterostructures. Phys Rev Lett, 2006, 97: 227201[DOI]

119 Gajek M, Bibes M, Fusil S, et al. Tunnel junctions with multiferroic barriers. Nature Mater, 2007, 6: 296-302[DOI]

120 Binek C, Dondin B. Magnetoelectronics with magnetoelectrics. J Phys: Cond Matter, 2005, 17: L39-L44[DOI]

121 Santoro R P, Segal D J, Newnham R E. Magnetic properties of LiCoPO4 and LiNiPO4. J Phys Chem Solids, 1966, 27: 1192—1193 122 Vaknin D, Zarestky J L, Miller L L, et al. Weakly coupled antiferromagnetic planes in single-crystal LiCoPO4. Phys Rev B, 2002, 65:

224414[DOI]

123 Kornev I, Bichurin M, Rivera J P, et al. Magnetoelectric properties of LiCoPO4 and LiNiPO4. Phys Rev B, 2000, 62: 12247-12253[DOI]

124 Arima T. Resonant magnetoelectric X-ray scattering in GaFeO3: Observation of ordering of toroidal moments. J Phys Soc Jpn, 2005, 74: 1419-1422[DOI]

125 Van Aken B B, Rivera J P, Schmid H, et al. Observation of ferrotoroidic domains. Nature, 2007, 449: 702-705[DOI]

126 Wang C J, Guo G C, He L. Ferroelectricity driven by the noncentrosymmetric magnetic ordering in multiferroic TbMn2O5: A first-principles study. Phys Rev Lett, 2007, 99: 177202[DOI]

127 Duan C G, Jaswal S S, Tsymabl E Y. Predicted magnetoelectric effect in Fe/BaTiO3 multilayers: Ferroelectric control of magnetism.

Phys Rev Lett, 2006, 97: 047201[DOI]

128 Ogawa Y, Yamda H, Ogaswara T, et al. Nonlinear magneto-optical Kerr rotation of an oxide superlattice with artificially broken symmetry. Phys Rev Lett, 2003, 90: 217403[DOI]

129 Yamada H, Kawasaki M, Lottermoser T, et al. LaMnO3/SrMnO3 interfaces with coupled charge-spin-orbital modulation. Appl Phys Lett, 2006, 89: 052506[DOI]

130 Ederer C, Spaldin N A. Towards a modern theory of toroidal moments in bulk periodic crystals. Cond-Mat/0706.1974v1

相關文件