• 沒有找到結果。

第五章 結果與討論

6.2 建議

1. 由於對於造成乾淨麥寮砂以及乾淨高雄砂的高壓縮性的機制目前並不 清楚,所以仍需進一步的研究以釐清壓縮量的來源。所以作者提出以下 幾項後續的試驗方法以供參考:

(1) 使用均質且相同的人造材料(例如:玻璃或鐵)製作出不同形狀的顆粒 進行壓密試驗以釐清是否扁平顆粒造成壓縮量的增加。

(2) 使用天然的砂土進行試驗(如:麥寮砂、員林砂和高雄砂),並在不改 變粒徑分佈曲線的條件下,將試體內大部分的扁平顆粒去除之後再

152

進行壓密試驗。

(3) 進行大型的壓密試驗,並於壓密試體中裝設高解析度的攝影機觀察 顆粒的排列方式在不同應力狀態下的改變情形。

2. 進 一 步 修 改 MIT-S1 模 式 , 使 其 能 有 效 的 預 測 過 渡 性 砂 土 ( 例 如:FC=30~50%的麥寮砂,FC=49%的員林砂試體)壓密行為。

153

參考文獻

Aboshi, H., Yoshikumi, H. and Maruyama, S. (1970). “Constant loading rate consolidation test.” Soils and foundations 10, No.1, 43-56.

Almeida, M.S.S., Jamiolkowski, M., and Peterson, R.W., (1991)

“Preliminary Results of CPT tests in Calcareous Quiou Sand,”

Proceedings of the International Symposium on Calibration Chamber Testing, Potsdam, New York, 1991, pp.41-53, Elsevier.

Andraws, K.Z. and El-Sohby, M.A., (1973) “Factors Affecting Coefficient of Earth Pressure Ko.” ASCE, SM, Vol.99, No.7, pp.527-539.

Biarez, J., and Hicher, P.I. (1994) “Elementary soils mechanics: saturated remoulded soils.” A.A. Balkema, Rotterdam.

Borden, R.H., (1992) “ Boundary Displacement Induced by DMT Penetration," Proceedings of the International Symposium on Calibration Chamber Testing, Potsdam, New York, 1991, pp.101-18, Elsevier.

Carriglio, F. (1989). “Caratteristiche sforzi-deformazioni-resistenza delle sabbie.” PhD thesis, Politecnico di Torino.

Chu, J., and Leong, W.K. (2004) “Effect of Fine on Instability Behavior of Loose Sand,” Geotechnique 52, No. 10, pp 751-755.

Chuhan, F. A., Kjeldstad, A., Bjørlykke, K., and Høeg K., (2003),

“Experimental compression of loose sands: relevance to porosity reduction during burial in sedimentary basins” Canadian Geotechnical Journal, Vol 40, pp 995-1011.

Coop, M.R., and Lee, I.K. (1993) “The behaviour of granular soils at elevated stress.” In Proceedings of Wroth Memorial Symposium Predictive Soil Mechanics, Oxford, 1992. Edited by G.T. Houlsby and A.N. Schofield. Thomas Telford, London, pp. 101–112.

154

Coop, M. R. (2005) “On the mechanics of reconstituted and natural sands.” Proc., 3rd Int. Symp. on Deformation Characteristics of Geomaterials, Lyon, France, H. Di Benedetto, T. Doanh, H.

Geoffroy, and C. Sauzeat, eds., A.A. Balkema, Rotterdam, The Netherlands, 29–58.

Dafalias, Y. F. and Herrmann, L. R. (1982). “Bounding surface formulation of soil plasticity.” In Soil mechanics: transient and cyclic loads (eds G. N. Pande and O. C. Zienkiewicz). New York : Wiley.

Deresiewicz, H. (1958). “Stress-strain relations for a simple model of a granular medium.” J. Appl. Mech. Am. Sot. Mech. Enqrs 25. No.2, 402-406.

Dyvik, R., and Madshus, C. (1985). “Lab measurements of Gmax using bender element.” Proc., ASCE Convention on Advances in the Art ofTesting Soils under Cyclic Conditions, 186–196.

El-Sohby, M. A., and Andrawes K. Z. (1972). “Deformation characteristics of granular Materials under hydrostatic compression” Canadian Geotechnical Journal No 9, pp 338-350.

Fioravante, V., Jamiolkowski, M., Tanizawa, F., and Tatzuoka, F. (1991),

“Results of CPT’s in Toyoura Quartz sand,” Proceedings of the International Symposium on Calibration Chamber Testing,”

Potsdam, New York, 1991, pp.135-146, Elsevier.

Fukagawa, R. and Ohta, H., (1988), “Effect of Some Factors on Ko-value of Sand,"JSSMFE, Soil and Foundations, Vol.28, No.4, pp.93-106.

Hagerty, M.M., Hite, D.R., Ullrich, C.R., and Hagerty, D.J.

(1993) ”One-dimensional high pressure compression of granular material.” Journal of Geotechnical Engineering, ASCE, 119: 1–18.

Hardin, B.O., (1985) , "Crushing of Soil Particles" , Journal of Geotechnical Engineering Division, ASCE, Vol.111, pp.1177-1192.

155

Holtz, R.D. and Kovacs, W.D. (1981) An Introduction to Geotechnical Engineering, Prentice-Hall, Inc., Englewood Cliffs, N.J., 733 pp.

Huang, Y.T., Huang, A.B., Kuo, Y.C., and Tsai, M.D. (2004) “A Laboratory Study on The Undrained Strength of A Silty Sand from Central Weestern Taiwan,” Soil Dynamics and Earthquake Engineering 24, pp 733-743.

Huang, A.B., and Huang, Y.T., (2007). “Undisturbed Sampling and Laboratory Shearing Tests on a Sand with Various Fines Contents,”

Soils and Foundations, Vol.47, No.4, pp.771-781.

Huang, A.B., Tai, Y.Y., Lee, W.F., and Ishihara, K., (2008) “Sampling and field characterization of the silty sand in central and southern Taiwan,” Proceedings, The 3rd International Conference on Site Characterization, Taipei, pp.1457-1463.

Janbu, N. (1963). “Soil compressibility as determined by oedometer and triaxial tests.” Proc. 3rd Eur. Conf Soil Mech., Wiesbaden 1, 19-25.

Jamiolkowski, M., Lancellotta, R., and Lo Presti, D. C. F. (1994).

“Remarks on the stiffness at small trains of six Italian clays.” Proc., 1st Int. Symp. On Pre-Failure Deformation Characteristics of Geomaterials, Vol. 2, Balkeman, Rotterdam, The Netherlands, 817-836.

Kawaguchi, T., Mitachi, T., and Shibuya, S., (2001) “Evaluation of Shear Wave Travel Time in Laboratory Bender Element Test,”

Proceedings of the 15th International Conference on Soil Mechanics and Geotechnical Engineering, Istanbul, Vol.1, pp.155-158.

La Rochelle, P., Sarrailh, J., Tavenas, F., Roy, and Laroueil, S., (1981)

“Causes of Sampling Disturbance and Design of a New Sampler for Sensitive Soils,” Canadian Geotechnical Journal, Vol.18, No.1, pp.52-66.

Lade, P.V., and Yamamuro, J.A. (1996) Undrained sand behavior in

156

axisymmetric tests at high pressures. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 122(2): 120–129.

Lambrechts, J.R., and Leonard, G.A. (1978) “Effects of Stress History on Deformation of Sand,” Journal of Geotechnical Engineering Division, ASCE, Vol. 104, No. GT11, pp. 1371-1387.

Lee, K., and Farhoomand, I., (1967) , “Compressibility and Crushing of Grannular Soil in Anisotropic Triaxial Compression” Canadian Geotechnical Journal, Vol 4, No 1, pp. 68-99.

Lee, K. (1981). “Consolidation with constant rate of deformation.”

Geotechnique 31, No.2, 215-229.

Lee, J.S., and Santamarina, J.C., (2005), “ Bender Elements:

Performance and Signal Interpretation.” Journal of Geotechnical and Geoenvironmental Engineering, Vol.131, No.9, pp.1063-1070.

Lowe, J., III, Jonas, E. Jc Obrician, V. (1969). “Controlled gradient consolidation test.” J. Soil Mech. Fdns Div.,Am. Sot. Ciu. Engrs 95, No. SM l, 77-97.

Mindlin, R. D. and Deresiewicz, H. (1953). “Elastic spheres in contact under varying oblique forces.” J. Appl. Mech. Am. Sot. Mech.

Engrs 20, No.3, 327-344.

Miura, N. (1979). “A consideration on the stress-strain relation of a sand under high pressures.” Proc. Jap. Sot. Civ. Engrs 282, No. 2, l27-130.

Moore, C.A., (1971), “Effect of Mica on Ko Compressibility of Two Soils,”ASCE,GT, Vol.108, No.6, pp.1275-1291.

Nakata, Y., Hyodo, M., Hyde, A.F.L., Kato, Y., and Murata, H., (2001)

“Microscopic particle crushing of sand subjected to high pressure one-dimensional compression.” Soils and Foundations,41: 69–82.

Nocilla, A., Coop, M.R.; and Colleselli, F., (2006) “The mechanics of an

157

Italian silt: an example of 'transitional' behaviour.” Geotechnique Vol 56, Issue 4, pp 261-271.

Okochi, Y. and Tatsuoka, F., (1984), “Some Factors Affecting Ko-values of Sand Measured in Triaxial Cell,” JSSMFE, Soils and Foundations, Vol.24, No3, pp.52-68.

Pestana, J.M., and Whittle, A.J., (1995). Compression model for cohesionless soils. Géotechnique, 45(4): 611–631.

Rampello, S., Viggiani, G. and Silvestri, F. (1995) “Panellist Discussion:The Dependence of G0 on Stress State and History in Cohesive Soils.”Pre-failure Deformation of Geomaterials, Balkema, Rotterdam, pp 1155-1160.

Robertson, P. K., Sasitharan, S., Counning J. C., and Sego D. C., (1995)

“Shear-Wave Velocity to Evaluate In-Situ State of Ottawa Sand.”

Journal of Geotechnical Engineering, Vol. 121, No. 3, pp. 262-273.

Sanches-Salinero, I., Roesset, J.M., and Stokoe, K.M., (1986) “Analytical Studies of Body Wave Propagation and Attenuation,” Report GR 86-15, University of Texas, Austion.

Shibuya, S., and Tanaka, H. (1996) “Estimate of elastic shear modulus in Holocene soil deposits.” Soils and Foundations, 36(4): 45–55.

Smith, R. E. and Wahls, H. E. (1969). “Consolidation under constant rate of strain.” J. Soil Mech. Fdns Div., Am. Sot. Civ. Engrs 95, No.

SM2, 519-539.

Thevanayagam, S., (1998), “Effects of fines and confining stress on undrained shear strength of silty sands,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.124, No.6, June, pp.479-490.

Umehara, Y. and Zen, K. (1980). “Constant rate of strain consolidation for very soft clayey soils.” Soils Fdns 20, No. 2, 79-95.

Vesic, A. S., and Clough G.. W. (1968). “Behavior of granular materials

158

under high stresses.” J. Soil Mech. Fdns Div. Am. Soc. Civ. Engrs 94, SM3, 661-688.

Viggiani, G. and Atkinson, J.H. (1995) “Stiffness of Fine Grained Soil at Very Small Strains.” Geotechnique, 45(2), pp 249-265.

Viggiani, G. and Atkinson, J. H., (1995), “Interpretation of bender element tests,” Geotechnique, Vol.45, No.1, pp.149-154.

Whittle, A. J. (1993). “Evaluation of a constitutive model for overconsolidated clays.” Geotechnique 43, No.2, 289-314.

Wissa, A. E. Z., Christian, J. T., Davis, E. H., and Heiberg, S.(1971).

“Consolidation at constant rate of strain.” J. Soil Mech. Fdns Div., Am. Sot. Ciu. Engrs 97, No. SM lO, 1393-1413.

Yamamuro, J.A., Bopp, P.A., and Lade, P.V. (1996) “One dimensional compression of sands at high pressures,” Journal of Geotechnical Engineering Division, ASCE, 122(2): 147-154.’

Zhang, J., Wong, T.F., Yanagidani, T., and Davis, D.M. (1990b),

“Pressure-induced microcracking and grain crushing in berea and boise sandstones—acoustic emission and quantitative microscopy measurements.” Mechanics of Materials, 9: 1–15.

王統立 (2000) “高細料含量粉土細砂中 CPT 之標定試驗," 國立交

159

探討",財團法人工業技術研究院-能源與資源研究所。

張嘉偉(1997)“圓錐貫入試驗在粉砂中之標定”國立交通大學土木工 程系,碩士論文。

黃耀道 (2007)“台灣中西部粉土質砂土液化行為分析,"國立交通大 學土木工程學系, 博士論文

蔡明道 (2002) “細粒料含量對粉土細砂不排水強度之影響,” 國立交 通大學土木工程學系, 碩士論文。

戴源昱 (2007) “台灣西南部粉土質細砂 CRR 與 qc關係之標定,” 國立 交通大學土木工程學系, 碩士論文。

大河內保彥、河邊衛、龍崗文夫(1982)「黏土長期 Ko 壓密不排水三 軸壓縮試驗」,第十七回日本土質工程研究發表會講演集,

pp.353-356。(日文)

望月秋利(1983),「室內試驗技術」土與基礎,日本土質研究工程學 會,Vol.31, No.7, pp.52-53。(日文)

森協武夫、藤井秀憲、網干壽夫(1998),「有關飽和黏土 Ko 值之研 究 」, 日 本 土 質 工 程 研 究 會 論 文 報 告 集 ,Vol.28, No.2, pp.205-215。(日文)

大西有三、蘆田徹也、矢野隆夫、小西真治(1982),「以微電腦控制 自動 Ko 壓密三軸試驗裝置」,第 17 回日本土質工學研究發表

160

會講演集,pp.213-216。(日文)

161

附錄 A

CK

o

U 試驗在 K

o

壓密過程中的總體積變化與垂直向體 積變化監測結果

10 20 30 40 50 60

σ

v

', kPa 0

2 4 6 8 10

Volume change d, ml

ΔV

(volume)

ΔV

(axial)

MLS

FC<5%

OCR=1.0

FC<5%的麥寮砂在壓密過程中的體積變化監測結果

162

0 20 40 60 80 100 120

σ

v

', kPa 0

2 4 6 8 10

Volume cha nged, ml

ΔV

(volume)

ΔV

(axial)

MLS

FC<5%

OCR=2.0

FC<5%的麥寮砂在壓密過程中的體積變化監測結果

163

0 40 80 120 160 200 240

σ

v

', kPa 0

2 4 6 8 10

Volume changed, ml

ΔV

(volume)

ΔV

(axial)

MLS

FC<5%

OCR=4.0

FC<5%的麥寮砂在壓密過程中的體積變化監測結果

164

10 20 30 40 50 60

σ

v

', kPa 0

1 2 3 4 5

Volume changed, m l

MLS FC=15%

OCR=1.0

ΔV

(volume)

ΔV

(axial)

FC=15%的麥寮砂在壓密過程中的體積變化監測結果

165

20 40 60 80 100 120

σ

v

', kPa 0

1 2 3 4 5

Volume cha nged, ml

MLS FC=15%

OCR=2.0

ΔV

(volume)

ΔV

(axial)

FC=15%的麥寮砂在壓密過程中的體積變化監測結果

166

0 40 80 120 160 200 240

σ

v

', kPa 0

2 4 6 8 10

Volume changed, ml

MLS FC=15%

OCR=4.0

ΔV

(volume)

ΔV

(axial)

FC=15%的麥寮砂在壓密過程中的體積變化監測結果

167

10 20 30 40 50 60

σ

v

', kPa 0

2 4 6 8 10

Volume changed, ml

MLS FC=30%

OCR=1.0

ΔV

(volume)

ΔV

(axial)

FC=30%的麥寮砂在壓密過程中的體積變化監測結果

168

0 20 40 60 80 100 120

σ

v

', kPa 0

2 4 6 8 10

Volume changed, ml

MLS FC=30%

OCR=2.0 ΔV

(volume)

ΔV

(axial)

FC=30%的麥寮砂在壓密過程中的體積變化監測結果

169

0 40 80 120 160 200 240

σ

v

', kPa 0

4 8 12 16 20

Volume changed, ml

MLS FC=30%

OCR=4.0 ΔV

(volume)

ΔV

(axial)

FC=30%的麥寮砂在壓密過程中的體積變化監測結果

170

10 20 30 40 50 60

σ

v

', kPa 0

2 4 6 8 10

Vol ume change d, ml

MLS FC=50%

OCR=1.0

ΔV

(volume)

ΔV

(axial)

FC=50%的麥寮砂在壓密過程中的體積變化監測結果

171

0 20 40 60 80 100 120

σ

v

', kPa 0

2 4 6 8 10

Volume cha nged, ml

MLS FC=50%

OCR=2.0

ΔV

(volume)

ΔV

(axial)

FC=50%的麥寮砂在壓密過程中的體積變化監測結果

172

0 40 80 120 160 200 240

σ

v

', kPa 0

4 8 12 16 20

Volume cha nged, ml

MLS FC=50%

OCR=4.0

ΔV

(volume)

ΔV

(axial)

FC=50%的麥寮砂在壓密過程中的體積變化監測結果

相關文件