• 沒有找到結果。

第六章 結論與建議

第二節 建議

(二)、由Johnstone(1993)提出的化學表徵的三角關係可知到一個完整的化學概 念必定包含著巨觀表徵、符號表徵與微觀表徵之間的連接。然而從本研究的 結果可以明確的看出學生在化學的學習上關於微觀表徵的形成與轉換是明 顯較差的,而這很可能是教師在教學設計上的問題所造成的。因此建議教師 在化學教學上可以採用本研究所提出「以微觀表徵為核心的教學模式」,有 效加強學生微觀表徵形成能力及微觀表徵與其他表徵轉換的能力,進而提升

學生的化學學習成就。最後,教師在微觀表徵的呈現上,應採用更多元、具 體可視的方式來教學,如:圖像、動畫、模型製作等,以增強學生對微觀表 徵的記憶與理解。

(三)、教師在教學後對學生的評量設計上,以及一些針對國中生的化學學習的 評量上,適量的設計一些微觀表徵與其他表徵之間相互轉換的題目,則依照 國內教育的現況,教師的教學與學生的學習很快的就會重視化學上微觀表徵 的學習,形成考試引導教學的情形。

三、對於未來研究方向的建議

(一)本研究顯示教師在教學上應針對學生微觀表徵的形成與轉換能力有所加 強,因此建議教師在化學教學上運用本研究所提出的「以微觀表徵為核心的 教學模式」,然而此教學模式對學生在化學表徵形成與轉換能力的補強及化 學學習成就的提升成效為何,則有待研究著進一步追蹤探討。

(二)本章第一節的討論提到許多迷思概念的形成,大多是學生微觀表徵的形成 能力不足所造成。然而,有些迷思概念則可能是其他表徵的形成能力或表徵 轉換能力不足所造成,因此不同表徵形成能力或表徵轉換能力的缺陷會形成 那些迷思概念的類型,則有待研究者進一步觀察分析。

參考文獻

念學習之影響。科學教育學刊,13(3),317-345。

邱美虹 (2001)。台灣地區中學生「粒子、化學平衡、酸鹼值」概念之心智模式 與成因之探討(Ⅱ)。行政院國家科學委員會專題研究計畫成果報告

(NSC90-2511-S-003-092)。

邱美虹 (2005)。以認知師徒制探討建模能力與歷程對學生學習物質科學中 [氧化

蔡俊義 (2011)。多重表徵理論在理化科教學成效之研究—以酸鹼鹽單元為例。

國立臺灣師範大學科學教育研究所碩士論文,未出版,臺北。

(二)英文部分

Abraham, M. R., Grzybowski, E. B., Renner, J. W., & Marek, E. A. (1992).

Understandings and misunderstandings of eighth graders of five chemistry concepts found in textbooks. Journal of Research in Science Teaching, 29(2), 105-120.

Aksela, M. (2005). Supporting meaningful chemistry learning and higher-order thinking through computer-assisted inquiry: A design research approach. Maija

Aksela.

Andersson, B. (1986). Pupils’ explanations of some aspects of chemical reactions.

Science Education, 70, 549–563.

Andersson, B. (1990). Pupils' Conceptions of Matter and its Transformations (age 12-16). Studies in Science Education, 18, 53-85.

Ainsworth, S. (1999). The functions of multiple representations. Computers &

Education, 33,131-152.

Ainsworth, S., & VanLabeke, N. (2004). Multiple forms of dynamic representation.

Learning and Instruction, 14(3), 241-255.

Ainsworth, S. (2006). DeFT: A conceptual framework for considering learning with multiple representations. Learning and Instruction, 16(3), 183-198.

Ainsworth, S. (2008). The Educational Value of Multiple-representations when Learning Complex Scientific Concepts. Visualization: Theory and Practice in Science Education, 3, 191–208.

Ben-Zvi, R., Eylon, B.-S., & Silberstein, J. (1987). Students’ visualization of some chemical reactions. Education in Chemistry, 24(4), 117–120.

Bodner, G. M. (1991). I Have Found You an Argument: The Conceptual Knowledge of Beginning Chemistry Graduate Students. Journal of Chemical Education, 68, 385-388.

Bodner, G. M. (1992). The Fipse Lectures: Refocusing the General Chemistry Curriculum Why Changing the Curriculum may not be Enough. Journal of Chemical Education, 69, 186-190.

Boo, H. K., (1998). Students’ Understanding Of Chemical Bonding And Energetics Of Chemical Reactions, Journal of Research in Science Teaching, 35(5), 569–581.

Bossé, M. J., Adu-Gyamfi, K., & Cheetham, M. R. (2011). Assessing the Difficulty of Mathematical Translations: Synthesizing the Literature and Novel Findings.

International Electronic Journal of Mathematics Education, 6(3).

Buckley, B. C., & Boulter, C. J. (2000). Investigating the role of representations and expressed models in building mental models. Developing models in science education, 119-135.

Bruner, J. S. (1964). The course of cognitive growth. American psychologist, 19(1), 1-15.

Coll R.K. and Treagust D.F. (2001), Learners' mental models of chemical bonding, Research in Science Education, 31, 357-382.

Cheng, M., & Gilbert, J. K. (2009). Towards a Better Utilization of Diagrams in Research into the Use of Representative Levels in Chemical Education. Multiple Representations in Chemical Education, 4, 55-73.

Davidowitz, B., & Chittleborough, G. (2009). Linking the macroscopic and sub-microscopic levels: Diagrams. Multiple representations in chemical education, 4, 169-191.

Devetak, I. (2005). Explaining the latent structure of understanding

University of Ljubljana, Ljubljana.

Devetak, I., Lorber, E. D., Juriševič, M., & Glažar, S. A. (2009). Comparing

Slovenian year 8 and year 9 elementary school pupils’ knowledge of electrolyte chemistry and their intrinsic motivation. Chemistry Education Research and Practice, 10(4), 281-290.

Ebenezer, J. V. (2001). A Hypermedia Environment To Explore And Negotiate Students’ Conceptions: Animation Of The Solution Process Of Table Salt, Journal of Science Education and Technology, 10(1), 73–92.

Gabel, D. (1994). Handbook of research on science teaching and learning. Macmillan Library Reference.

Gabel, D. (1998). The complexity of chemistry and implications for teaching.

International handbook of science education, 1, 233-248.

Gabel, D. L., (1999). Improving Teaching and Learning Through Chemistry

Education Research: A Lock to the Future, Journal of Chemical Education, 76(4), 548-554.

Gabel, D. L., Samuel, K. V., & Hunn, D. (1987). Understanding the particulate nature of matter. Journal of Chemical Education, 64(8), 695–697.

Gilbert, J. K. (1994). Models & modelling in science education. Hatfield: Association for Science Education.

Gilbert, J. K. (1993). The role of models and modelling in science education.

Hatfield: Association for Science Education.

Gilbert, J. K., Boulter, C. J., & Elmer, R. (2000). Positioning models in science education and in design and technology education. Developing models in science education, 3-17.

Harrison, A. G., & Treagust, D. F. (1996). Secondary students' mental models of

80(5), 509-534.

Harrison, A. G. & Treagust, D. F. (2000). Learning about Atoms, Molecules, and Chemical Bonds: A Case Study of Multiple-Model Use in Grade 11 Chemistry, Science Education, 84, 352–381.

Harrison, A. G., & Treagust, D. F. (2002). The particular nature of matter: challenges in understanding the submicroscopic world. Chemical Education: Towards Research-based Practice, 17, 189.

Hiebert, J., & Carpenter, T. P. (1992). Learning and teaching with understanding.

Hodson, D. (1990). A critical look at practical work in school science. School Science Review, 71(256), 33–40.

Johnstone, A.H. (1984). New Stars for the Teacher to Steer By? Journal of Chemical Education, 61(10), 847-849.

Johnstone, A.H. (1991). Why Science is Difficult to Learn? Things are Seldom What they Seem. Journal of Computer Assisted Learning, 7, 75-83.

Johnstone, A. H. (1993). The development of chemistry teaching. Journal of Chemical Education, 70(9), 701-705.

Johnstone, A. H. (2000). Teaching of chemistry: Logical or psychological? Chemical Education: Research and Practice in Europe, 1(1), 9–15.

Jungck, J., & Calley, J. (1985). Strategic simulations and post-socratic pedagogy:

constructing computer software to develop long-term inference through experimental inquiry. American Biology Teacher, 47, 11-15.

Marais, P., & Jordaan, F. (2000). Are we taking symbolic language for granted?

Journal of Chemical Education, 77(10), 1355–1357.

Mayer, R. E. (1997). Multimedia learning: Are we asking the right questions?

Educational Psychologist, 32(1), 1-19.

test of dual-coding hypothesis. Journal of Educational Psychology 83(4), 484-490.

McKendree, J., Small, C., Stenning, K., & Conlon, T. (2002). The role of

representation in teaching and learning critical thinking. Educational Review, 54(1), 57-67.

Nakhleh, M. B., & Krajcik, J. S. (1994). The effect of level of information as

presented by different technologies on students' understanding of acid, base and pH concepts. Journal of Research in Science Teaching, 31(10), 1077-1096.

National Research Council (1996). Nationalscience education standards. Washington, DC: National Academy Press.

Nelson, P. (2002). Teaching chemistry progressively: From substances, to atoms and molecules, to electrons and nuclei. Chemistry Education: Research and Practice, 3, 215–228.

Nicoll, G. (2001). A Report Of Undergraduates’ Bonding Alternative Conceptions, International Journal of Science Education, 23(7), 707–730.

Novick, S., & Nussbaum, J. (1981). Pupils’ understanding of the particulate nature of matter: A cross-age study. Science Education, 65(2), 187-196

Paivio, A. (1971). Imagery and verbal processes. New York: Holt, Rinehart &

Winston.

Paivio, A. (1986). Mental repersentations: A dual coding approach. New York:

Oxford University Press.

Paivio, A. (1990). Mental representations: a dual coding approach (2nd ed.). New York: Oxford University Press.

Perner, J. (1991). Understanding the representational mind (Vol. 29). Cambridge, MA:

MIT press.

Equilibrium, Journal of Chemical Education, 78(5), 629–631.

Smith, K. J., & Metz, P. A. (1996). Evaluating student understanding of solution chemistry through microscopic representations. Journal of Chemical Education, 73(3), 233-235

Sirhan, G. (2007). Learning difficulties in chemistry: An overview. Journal of Turkish Science Education, 4(2), 2-20.

Taber, K. (2002). Chemical misconceptions: Prevention, diagnosis and cure (Vol. 1).

Royal Society of Chemistry.

Tockus-Rappoport, L. (2008). Computer Simulations as a Bridge Between Different Representation Levels of Scientific Concepts (Doctoral dissertation, Hebrew

University of Jerusalem).

Treagust D. F., Chittleborough G. D. & Mamiala T. L. (2002), Students' understanding of the role of scientific models in learning science, International Journal of Science Education, 24, 357-368

Treagust, D. F., Chittleborough, G., & Mamiala, T. (2003). The role of submicroscopic and symbolic representations in chemical explanations. International Journal of Science Education, 25(11), 1353–1368.

Treagust, D. F. (2009). Multiple representations in chemical education (Vol. 4). J. K.

Gilbert (Ed.). Springer.

Tuckey, H., & Selvaratnam, M. (1993). Studies involving three-dimensional visualisation skills in chemistry. Studies in Science Education, 21, 99–121.

Voska, K. W., & Heikkinen, H. W. (2000). Identification and analysis of student conceptions used to solve chemical equilibrium problems. Journal of Research in Science Teaching, 37(2), 160-176.

Wu, H.-K., Krajcik, J. S., & Soloway, E. (2001). Promoting conceptual understanding

Journal of Research in Science Teaching, 38(7), 821 - 842.

Yarroch, W. L. (1985). Student understanding of chemical equation balancing.

Journal of Research in Science Teaching, 22(5), 449-459.

Zoller, U. (1990). Students’ Misunderstandings and Alternative Conceptions in College Freshman Chemistry (General and Organic), Journal of Research in Science Teaching, 27(10), 1053–1065.

附錄一

化學表徵形成能力問卷 酸、鹼、鹽與酸鹼平衡反應

班級: 座號: 姓名:

◎以下兩大題,請同學盡量將你想到的答案試著用各種方式表達出來,表達的方式或種類越 多,老師越能瞭解同學的學習成果。

一、何謂強酸?

1、請同學從生活經驗中,肉眼所看到過,或可以直接感受到的特性,來描述什麼是強酸?

2、請同學藉由粒子層級(分子、原子或離子等等)的排列或運動的圖示或文字來表達什 麼是強酸?

3、請同學藉由化學符號、數字、圖形、分子式、結構式或方程式來描述什麼是強酸?

二、何謂酸鹼中和反應?

1、請同學從生活經驗中,肉眼所看到過,或可以直接感受到的特性,來描述什麼是酸鹼 中和反應?

2、請同學藉由粒子層級(分子、原子或離子等等)的排列或運動的圖示或文字來表達什 麼是酸鹼中和反應?

3、請同學藉由化學符號、數字、圖形、分子式、結構式或方程式來描述什麼是酸鹼中和 反應?

附錄二

相關文件