五、 結論與建議
5.2 建議
1. 針對細微粒所造成不透光率問題之解決方向,除可參考第 2.4.6 節,EPRI 所提 供不透光率問題指引方法外,另外參考文獻資料可提供解決方式有:靜電集塵 器極板、極線、敲擊系統維護更新,提升集塵效率;空氣預熱器熱元件更新、
阻塞清洗提高熱交換效率,降低出口煙氣溫度;SCR 觸媒於可接受還原效率 下,儘量選擇低釩觸媒、控制煙道各點煙氣溫度於設計值、減少觸煤層數、降 低未反應氨濃度。注意FGD 除霧器阻塞或間距過大,提升清洗水品質。燃料 混拌降低煤值硫份含量,使煙氣之二氧化硫濃度降低,間接降低亞硫酸轉化濃 度;另外混拌亦須考量飛灰特性,低鐵高鹼度飛灰,有助於降低煙氣中亞硫酸 濃度。若以上控制設備效率及措施改善空間已經不大時,高成本選擇方案為改 用袋式集塵或加裝濕式靜電集塵器。
2. 案例煙柱顏色隨觀測角度改變,與 EPRI 不透光率問題指引所述相符,造成不 透光原因為細微粒散光所產生不透光率,與不透光貢獻成因評估結果相同,欲 確認細微粒屬可過濾性粒狀物﹙FPM﹚,或屬可冷凝性粒狀物﹙CPM﹚,可進 一步實際採取ESP 出口 SO3/H2SO4,因為此區域煙氣溫度尚高於硫酸露點溫 度,且固體微粒濃度最低;及分析煙氣脫硫設備進出口,粒狀物質量濃度及固 體微粒物理化學組成,一般測量硫酸根、氫離子、金屬(鋁、矽、鈣等),高 鈣含量可能為煙氣脫硫產生之微粒;高硫份可能為硫酸冷凝;高鈣/矽可能為 飛灰造成。另外若有使用氨或尿素,則須分析包含銨(NH4+)組成。
參 考 文 獻
Blythe, G., Dombrowsike, K. (2004). SO3 Mitigation Guide Update, EPRI, Palo Alto, CA:
2004.1004168.
Chris, R. S., Emelito, R. (2004). Controlling Opacity, SO3, and Slagging in Oil Fired Utility Boilers:Technology & Experience, presented at the Electric Power 2004 Conference, Baltimore, MD.
Chris, R. S., Kent, R. S., Controlling SO3 in Coal and Oil Fired Utility Boilers: Technology
& Experience, Fuel Tech, inc., 512 Kingsland Dr., Batavia, IL 60510.
Devito, M. S., Oda, R. L. (1998). Flue Gas SO3 Stratification at ESP inlets, Presented at the DOE-FETC Conference on Formatio, Distribution, Impact, and Fate of Sulfur Trioxide in Utility Flue Gas Streams, Pittsburgh, PA.
Damle, A. S., Ensor, D. S., Sparks, L. E. (1987). Opctions for Controlling Condensation Aerosol to Meet Opacity Standards, JAPCA, 37, 925-933.
DeFries, T. H. (1994). Power Plant In-Stack and Near-Stack Plume Opacity: A Estimating Workbook, EPRI Research Project 2250-03.
EPRI. (2008). Ammonoum Chloride as a Component of Condensable Particulate Matter., Product ID:1018105.
Farthing, W. E., Walsh, P. M., Gooch, J. P., McCain, J. D., Hinton, W. S., Heaphy, R. F.
(2004). Identification of (And Responses to)Potential Effects of SCR and WET Scrubbers on Submicron Particulate Emissions and Plume Characteristics, South Research Institute, EPA-600/R-04/107.
Fanoe, O. (2005). SCR on Large Marine two Stroke Diesel Engines Design and Operational Experience, ADB POWER APS, 3437 Rev(0)05.03.01, Denmark.
Hinds, W. C. (1999). Aerosol Technology, John Wiely & Sons, New York.
Hinton, W. S. (1996). Demonstration of Selective Catalytic Reduction Technology for the Control of Nitrogen Oxide Emissions from High-Sulfur, Coal-Fired Boilers, DOE/PC/89652-T19 Vol. 1, U.S. Department of Energy: Morgantown, WV, Also in DOE Innovative Clean Coal Technologies Program, Report SCS C-91-000026, Southern Company Services: Birmingham, AL.
Kikuchi, R. (2001). Environmental Management of Sulfur Trioxide Emission: Impact of SO3
on Human Health, Environmental Management, 27, 837–844.
Keeth, R. J., Balfour, D. A., Meserole, F. M., Defires, T. (1991). Utility Stack Opacity Troubleshooting Guide: Final Report, EPRI GS-7180 Research Project 2250-3.
Meng, R. Z., Karamchandani, P., Seigneur, C. (2000). Simulation of Stack Plume Opacity, Journal of the Air & Waste Management Association, 50, 869–874.
Moretti, A. L., Triscori, R. J., Ritzenthaler, D. P. (2006). A System Aapproach to SO3
Mitigration, EPRI-DOE-EPA-AWWA Combined Power Plant Air Pollutant Control Mega Symposium, Babcoc&Wilcox Company Technical Paper, Baltimore, Maryland.
Richards, J. R.﹙2000﹚.Control of Nitrogen Oxide Emissions: Student Manual, U.S.EPA ATPI Course 418.
Spencer,H., Romero, C., Levy, E., Yao, Z., Bilirgen H., Caram, H. (2007). Modeling of SO3
Formation Process in Coal-Fired Boiler: EPRI, Palo Alto, CA: 2007.1012689.
Srivastava, R. K., Miller, C. A., Erickson, C., Jambhekar, R. (2004). Emissions of Sulfur Trioxide from Coal-fired Power Plants, Journal of the Air & Waste Management Association, 54, 750–762.
U.S. EPA METHOD 5, Determination of Particulate Matter Emissions From Stationary Sources. http://www.epa.gov/ttn/emc/promgate/m-05.pdf
U.S. EPA METHOD 17, Determination of Particlate Matter Emissions From Stationary Sources. http://www.epa.gov/ttn/emc/promgate/m-17.pdf
U.S. EPA Method-9.(1984). Determination of the Opacity of Emissions from Stationary Sources, EPA-600/4-77-027b.
Walsh, P. M., McCain, J. D., Cushing, K. M. (2006). Evaluation and Mitigation of Visible Acidic Aerosol Plume from Coal Fired Power Boilers: Final Report, South Research Institute Project No 11402, EPA-600/R-06/156.
Wilder, J. M., Pilat, M. J. (1983). Calculated Droplet Size Distributions and Opacities of Condensed Sulfuric Acid Aerosols, Journal of the Air Pollution Control Association, 33, 858–863.
台中電廠,「4 號機、 5 號機、 9 號機煙囪檢測報告」,正修科技大學,民國 97 年。
姚增權,「濕煙氣的抬升與凝結」,環保技術,2003。
姚增權,「濕法脫硫煙氣直接排放的環境問題探討」,電力環保技術,2003。
圖2.4 網頁資料, http://www.coalpowermag.com/plant_design/31.html 。
環保署,「電力設施空氣污染物排放標準」, http://ivy5.epa.gov.tw/epalaw/,2003。
台電電力公司,「既有火力機組煙氣粒狀物排放濃度與粒狀物不透光率換算關係研究期 末報告」,富威/光宇工程顧問股份有限公司,民國83 年。
附錄A
EPRI 不透光率評估方法範例
評估法流程:
機組描述:
基本資料:
二氧化氮評估:
計算二氧化氮光學密度:
粒徑分布數據前處理:
累計質量對粒徑分布繪圖:
計算粗微粒質量比例:
計算粗細微粒分布:
細微粒粒徑分布:
粗微粒粒徑分布:
粗與細微粒粒徑分布計算:
粗微粒散光計算:
粗微粒幾何質量平均粒徑計算:
光學參數K 查圖:
計算粗微粒光學密度:
煙囪溫度區域數據:
細微粒散光計算:
細微粒幾何質量平均粒徑:
細微粒光學參數K 查圖:
硫酸霧光學參數K 查圖:
計算細微粒光學密度貢獻:
光學密度貢獻比例及煙囪內不透光率計算:
附錄B
研究案例原始檢測報告
安裝ESP+SCR+FGD 下煙囪粒徑分布數據:
安裝ESP+SCR+FGD 下煙囪粒徑分布數據:
安裝ESP+SCR+FGD 下煙囪粒徑分布數據:
安裝ESP+SCR+FGD 下煙囪粒狀物質量濃度數據:
安裝ESP+SCR+FGD 下煙囪粒狀物質量濃度數據:
安裝ESP+SCR+FGD 下煙囪粒狀物質量濃度數據:
安裝ESP 下煙囪粒徑分布數據:
安裝ESP 下煙囪粒徑分布數據:
安裝ESP 下煙囪檢測數據:
安裝ESP 下煙囪檢測數據: