• 沒有找到結果。

本研究所建立營建工程創新方案產生模式,雖經案例測試後證實可改善營建技術創新構想產生的 效率,然仍為初步之模式需要持續研究改進。對於後續研究方向建議包括:

一、可針對不同技術領域或設計需求定義不同之目標函數

本研究目標函數之定義為應用目標技術系統中之功能元件重要性得分,以及以技術系統之簡化設 計作為評估準則。建議未來可結合不同之技術創新領域,如綠色設計、環境友善度設計等,並加入評 估指標建構不同設計領域之目標函數進行應用。

36

二、針對兩項以上之技術進行最佳化的演算並產生創新構想

本研究所建構之構想自動產生模式,現階段可針對單一目標技術之功能模型進行演化而產生創新 構想。為能使創新更具多樣性,建議後續研究可針對兩項以上不同產品或技術進行交配與演化。所需 克服之關鍵研究課題為如何定義合適參與演化的技術與決定不同基因型長度之交配與適存值計算方 法。另外,尚需解決如何針對兩項以上之技術擷取創新概念,並進行融合產生新技術之問題。

三、將演化結果透過實體模型進行呈現與修正

目前本研究對於演化後所產生之創新技術方案的呈現方法,仍須依賴人員進行設計與繪製。現今 已有許多電腦輔助工具具有實體建模(solid modeling)與修正參數之功能。建議未來可於目標技術選 定與分析時,結合電腦實體建模以建構目標技術之實體模型。如此,經由演化後所得到之創新構想,

即可依據目標技術實體模型進行調整與呈現模型的幾何屬性(如體積、尺寸)或是材料屬性等,提供 人員快速了解新技術之內容。

37

參考文獻

1. Slaughter, E.S., “Models of construction innovation” Journal of Construction Engineering and Management, Vol.124, No.3, pp.226-231 (1998).

2. Blayse, A.M. and Manley, K., “Key influences on construction innovation,” Construction Innovation, Vol.4, No.3, pp.143-154 (2004).

3. Manley, K., McFallan, S. and Kajewski, S., “Relationship between construction firm strategies and innovation outcomes,” Journal of Construction Engineering and Management, Vol.135, No.8, pp.764-771 (2009).

4. Tatum, C.B., “Building better: technical support for construction,” Journal of Construction Engineering and Management, Vol.131, No.1, pp.23-32 (2005).

5. Barrett, P., Sexton, M. and Lee, A., Innovation in Small Construction Firms, Taylor & Francis, UK, (2008).

6. Holmen, E.H., Pedersen, A.C. and Torvatn, T., “ Building relationships for technological innovation,”

Journal of Business Research, Vol.58, No.9, pp.1240-1250 (2005).

7. Ioannou, P.G. and Liu, L.Y., “Advanced construction technology system-ACTS,” Journal of Construction Engineering and Management, Vol.119, No.2, pp.288-306 (1993).

8. Koskela, L. and Vrijhoef, R., “Is the current theory of construction a hindrance to innovation?” Building Research and Information, Vol.29, No.3, pp.197-207 (2001).

9. Nam, C.H. and Tatum, C.B., “Major characteristics of constructed products and resulting limitations of construction technology,” Construction Management and Economics, Vol.6, No.2, pp.133-148 (1988).

10. Nam, C.H. and Tatum, C.B., “Leaders and champions for construction innovation,” Construction Management and Economics, Vol.15, No.4, pp.259-270 (1997).

11. Toole, T.M., “Uncertainty and home builder’s adoption of technological innovations,” Journal of Construction Engineering and Management, Vol.124, No.4, pp.323-332 (1998).

12. Manseau, A., “Redefining innovation,” Building Tomorrow: Innovation In Construction And Engineering, Edited by Manseau, A. and Shields, R., Ashgate Publishing, England, (2005).

38

13. Seaden, G., “Economics of innovation in the construction industry,” Journal of Infrastructure systems, Vol.2, No.3, pp.103-107 (1996).

14. Li, H. and Love, P.E.D., “Developing a theory of construction problem solving,” Construction Management and Economics, Vol.16, No.6, pp.721-727 (1998).

15. Yu, W.D., Wu, C.M. and Chen, W.C., “Innovating Road Manhole Technology with Systematic Technology Innovation Process(STIP),” Proceedings of The 2nd International Multi-Conference on Engineering and Technological Innovation (IMETI 2009), 2009, Orlando, FL, pp.35-40 (2009).

16. Yu, W.D., Cheng, S.T., Wu, C.M. and Lou, H.R., “A Self-Evolutionary Model for Automated Innovation of Construction Technologies,” Automation in Construction, Vol.27, pp.78-88 (2012).

17. Nam, C.H. and Tatum, C.B., “Toward understanding of product innovation process in construction,”

Journal of Construction Engineering and Management, Vol.115, No.4, pp.517-534 (1989).

18. Tatum, C.B. “Potential mechanisms for construction innovation” Journal of Construction Engineering and Management, Vol.112, No.2, pp.178-191 (1986).

19. Tatum, C.B., “Improving constructability during conceptual planning,” Journal of Construction Engineering and Management, Vol.113, No.2, pp.191-207 (1987).

20. Chang, L. M., Hancher, D. E., Napier, T. R., & Kapolnek, R. G., “Methods to identify and asses new building technology,” Journal of Construction and Management, ASCE, Vol.114, No.3, pp.408-425 (1988).

21. Ioannou, P.G. and Carr, R.I., “Advanced building technology matrix system,” Journal of Construction Engineering and Management, Vol.114, No.4, pp.517-531 (1988).

22. Slaughter, E.S., “Implementation of construction innovations,” Building Research and Information, Vol.28, No.1, pp.2-17 (2000).

23. Skibniewski, M.J., and Chao, L.C., “Evaluation of advanced construction technology with AHP method,” Journal of Construction Engineering and Management, Vol.118, No.3, pp.577-593 (1992).

24. Chao, L.C. and Skibniewski M.J., “Neural network method of estimating construction technology acceptability,” Journal of Construction Engineering and Management, Vol.121, No.1, pp.130-142 (1995).

39

25. Slaughter, E.S., “Rapid innovation and integration of components comparison of user and manufacturer innovations through a study of residential construction,” Ph. D. Dissertation, Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge, MA, (1991).

26. Yu, W.D. and Skibniewski, M.J., “A Neuro-Fuzzy computational approach to constructability knowledge acquisition for construction technology evaluation,” Automation in Construction, Vol.8, No.5, pp.539-552 (1999).

27. Yu, W.D. and Skibniewski, M.J., “Quantitative constructability analysis with a Neuro-Fuzzy Knowledge-Based Multi-Criterion decision support system,” Automation in Construction, Vol.8, No.5, pp.553-565 (1999).

28. Yu, W.D. and Lo, S.S., “Patent Analysis-Based fuzzy inference system for technological strategy planning,” Automation in Construction, Vol.18, No.6, pp.770-776 (2009).

29. Mohamed, Y. and AbouRizk, S., “Application of the theory of inventive problem solving in tunnel construction,” Journal of Construction Engineering and Management, Vol.131, No.10, pp.1099-1108 (2005).

30. Teplitskiy, A., “Application of 40 inventive principles in construction” TRIZ Journal (online), http://www.triz-journal.com, (Mar 2005).

31. Cheng, S.T., Yu, W.D., Wu, C.M., Chiu, R.S., “Analysis of construction inventive patents based on TRIZ,” Proceedings of International Symposium on Automation and Robotics in Construction 2006 (ISARC 2006), Tokyo, Japan, pp.134-139 (2006).

32. Mao, X., Zhang, X., and AbouRizk, S.M., “Enhancing value engineering process by incorporating inventive Problem-Solving techniques,” Journal of Construction Engineering and Management, Vol.135, No.5, pp.416-424 (2009).

33. Zhang, X., Mao, X. and AbouRizk, S.M., “Development a knowledge management system for improved value engineering practices in the construction industry,” Automation in Construction, Vol.18, No.6, pp.777-789 (2009).

34. Mohamed, Y. and AbouRizk, S., “Technical knowledge consolidation using theory of inventive problem solving,” Journal of Construction Engineering and Management, Vol.131, No.9, pp.993-1001 (2005).

40

35. Abd El Halim, A.O. and Haas, R., “Process and case illustration of construction innovation,” Journal of Construction Engineering and Management, Vol.130, No.4, pp.469-614 (2004).

36. Kale, S. and Arditi, D., “Diffusion of computer aided design technology in architectural design practice,”

Journal of Construction Engineering and Management, Vol.131, No.10, pp.1135-1141 (2005).

37. Hüsig, S. and Kohn, S., "Computer aided innovation-State of the art from a new product development perspective," Computers in Industry, Vol. 60, No.8, pp.551-562 (2009).

38. Leon, N. "The future of computer-aided innovation," Computers in Industry, Vol. 60, No.8, pp.539-550 (2009).

39. Li, Y., Wang, J., Li, X., and Zhao, W. “Design creativity in product innovation”, International Journal of Advanced Manufacturing Technology, Vol.33. No.3-4, pp.213-222 (2007).

40. Tan, R., Ma, J., Liu, F. and Wei, Z., "UXDs-driven conceptual design process model for contradiction solving using CAIs," Computers in Industry, Vol. 60, No.8, pp.584-591 (2009).

41. Yeh, I.C., and Lien, L.C., “Knowledge discovery of concrete material using Genetic Operation Trees,”

Expert Systems with Applications, Vol. 36, No.3, Part 2, pp.5807–5812 (2009).

42. Holland, J., Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbour, MI, (1975).

43. Wilson, P.F., Dell, L D. and Anderson, G.F., Roots Cause Analysis: A Tool for Total Quality Management, ASQC Quality Press, MI, (1993).

44. Doggett, A., "Roots cause analysis: a framework for tool selection," The Quality Management Journal, Vol. 12, No.4, pp.34-45 (2005).

45. Mahto, D. and Kumar, A., “Application of root cause analysis in improvement of product quality and productivity,” Journal of Industrial Engineering and Management, Vol.1, No.2, pp.16-53 (2008).

46. Stone, R. and Wood, K., "Development of a functional basis for design," Journal of Mechanical Design, Vol. 122, No.4, pp.359-370 (2000).

47. Kurfman, M. A., Stock, M. E., Stone, R. B., Rajan, J. & Wood, K. L., “Experimental studies assessing the repeatability of a functional modeling derivation method,” Journal of Mechanical Design, ASME, Vol.125, No.4, pp.682-693 (2003).

41

48. Altsuller, G., 40 Principles

TRIZ Keys to Technical Innovation, Technical Innovation Center, MA, (2002).

49. Savransky, S.D., Engineering of Creativity, CRC press, FL, (2000).

50. Chen, J.L. and Liu, C.C., “An eco-innovative design approach incorporating the TRIZ method without contradiction analysis,” Journal of Sustainable Product Design, Vol.1, No.4, pp.263-272 (2001).

51. 劉志成,「TRIZ 方法改良與綠色創新設計方法之研究」,博士論文,國立成功大學機械研究所,

台南市(2003)。

52. 張智奇,「施工架水平踏板現況調查與性能測試」,行政院勞工委員會勞工安全衛生研究所計畫 報告,No.IOSH97-S312,新北市(2008)。

53. 李祥正,「M392217 鷹架踏板」,中華民國專利公報,第三十七卷,第三十二期,第 7793-7800 頁(2010)。

54. 林金面,土木施工學,文笙書局,台北市(2003)。

55. 趙文成,「I311129 混凝土之自養護方法」,中華民國專利公報,第三十六卷,第十八期,第 733-740 頁(2009)。

42

國科會補助專題研究計畫成果報告自評表

請就研究內容與原計畫相符程度、達成預期目標情況、研究成果之學術或應用價

值(簡要敘述成果所代表之意義、價值、影響或進一步發展之可能性) 、是否適

合在學術期刊發表或申請專利、主要發現或其他有關價值等,作一綜合評估。