• 沒有找到結果。

第五章 結論與建議

5.2 後續研究與建議

綜合本研究提供以下未來研究發展與建議做為參考:

1. 未來將進行更長遠的實車測試,評估 HCBNC 是否可以減緩冷卻液的 劣化與長期下來對車輛的影響。

2. 目前只能推論 0.04 wt.%的基礎性質表現較佳,未來將增強基礎性質與 實車測試的對應性。

3. 導熱係數為 HCBNC 的重要條件之一,未來可以選擇導熱係數較高的 奈米材料來做實驗。

140

141 CuO/ethylene glycol-water as a coolant,” J Dispers Sci Technol, vol. 35, pp.

67–84,2014.

[3] C. S. N. Azwadi, M N.A.W.Mohd Yazid, and R. Mamat, “ Recent advancement of nanofluids in engine cooling system,” Renewable and Sustainable Energy Reviews,vol.75,pp. 137-144, August. 2017.

[4] Y. Hwang, J. K. Lee, C. H. Lee, Y. M. Jung, S. I. Cheong, C. G. Leeg, B.

C. Ku, and S. P. Jang, “Stability and thermal conductivity characteristics of nanofluids,” Thermochimica Acta, vol. 455, pp. 70-74, April. 2007.

[5] J. H. Lee, K. S. Hwang, S. P. Jang, B. H. Lee, J. H. Kim, U. S. Stephen, U.

S. Choi, and C. J. Choi, “Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles,” Intrnational Journal of heat and mass transfer, vol.

51, pp. 2654-2656, June. 2008.

[6] W. Yu, H. Xie, L. Chen, and Y. Li, “Investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluid,” Thermochimica Acta, vol. 491, pp. 92-96, July. 2009.

142

[7] H. A. Mintsa, G. Roy, C. T. Nguyen, and D. Doucet, “New temperature dependent thermal conductivity data for water-based nanofluids, ” Intrnational Journal of Thermal Sciences, vol. 48, pp. 363-371, February.

2009.

[8] S. M. Peyghambarzadeh, S. H. Hashemabadi, S. M. Hoseini, and M. S.

Jamnani, “Experimental study of heat transfer enhancement using water/ethylene glycol based nanofluids as a new coolant for car radiators,”

International Communications in Heat and Mass Transfer, vol. 38, pp.

1283-1290, November. 2011.

[9] D. P. Kulkarni, D. K. Das, and R. S. Vajjha, “Application of nanofluids in heating buildings and reducing pollution,” Applied Energy, vol. 86, pp.

2566-2573, December. 2009.

[10] J. J. Michael, and S. Iniyan, “Performance analysis of a copper sheet laminated photovoltaic thermal collector using copper oxide – water nanofluid,” Solar Energy, vol. 119, pp. 439-451, September. 2015.

[11] T. B. Gorji, and A. A. Ranjbar, “A review on optical properties and application of nanofluids in direct absorption solar collectors (DASCs),”

Renewablr and Sustainable Energy Reviews, vol. 72, pp. 10-32, May. 2017.

[12] X. Li, C. Zou, and A. Qi, “Experimental study on the thermo – physical properties of car engine coolant (water/ethylene glycol mixture type) based SiC nanofluids,” International Communications in Heat and Mass Transfer, vol. 77, pp. 159-164, October. 2016.

143

[13] D. Weerapun, and W. Somchai, “Measurement of temperature – dependent thermal conductivity and viscosity of TiO2 – eater nanofluids,”

Experimental Thermal and Fluid Science, vol. 33, pp. 706-714, April. 2009.

[14] R. Saidur, K. Y. Leong, and H. A. Mohammed, “A review on applications and challenges of nanofluids,” Renewable and Sustainable Energy Reviews, vol. 15, pp.1646-1668, April. 2011.

[15] M. B. Moghaddam, E. K. Goharshadi, M. H. Entezari, and P. Nancarrow,

“Preparation, characterization, and rheological properties of grapheme – glycerol nanofluids,” Chemical Engineering Journal, vol. 231, pp. 365-372, September. 2013.

[16] K. Y. Leong, R. Saidur, A. H. Mamun, “Performance investigation of an automotive car radiator operated with nanofluid-based coolants,” Applied Thermal Engineering, vol. 30, pp. 2685-2692, December. 2010.

[17] S. M. Peyghambarzadeh, S. H. Hashemabadi, M. S. Jamnani, and S. M.

Hoseini, “Improving the cooling performance of automobile radiator with Al2O3 /water nanofluid,” Applied Thermal Engineering, vol. 31, pp. 1833-1838, July. 2011.

[18] A. ljam, R. Saidur, “Nanofluid as a coolant for electronic devices (cooling of electronic devices),” Applied Thermal Engineering, vol. 32, pp. 76-82, January. 2012.

[19] C. Selvam, R. S. Raja, D. M. Lai, and S. Harish, “Overall heat transfer coefficient improvement of an automobile radiator with graphene-based

144

suspensions,” International Journal of Heat and Mass Transfer, vol. 115, pp. 580-588, December. 2017.

[20] A. Behabadi, “An experimental investigation on rheological properties and heat transfert performance of MWCNT-water nanofluid flow inside vertical tubes,” Applied Thermal Engineering, vol. 106, pp. 916-924, 2016.

[21] A. M. Hussein, R. A. Baker, k. kadirgama, “Study of forced convection nanofluid heat transfer in the automotive cooling system , ” Case Studies in Thermal Engineering, Vol. 2, pp. 50-61, March. 2014.

[22] Y. Xuan, and Q. Li, “Heat transfer enhancement of nanofluids,”

International Journal of Heat and Fluid Flow, Vol. 21, pp. 58-64, February.

2000.

[23] X. F. Li, D. S. Zhu, X. J. Wang, N. Wang, J. W. Gao and H. Li, “Thermal conductivity enhancement dependent pH and chemical surfactant for Cu-H2O nanofluids,” Thermochimica Acta, Vol. 469, pp. 98-103, February.

2008.

[24] P. K. Das, A. K. Mallik, R. Ganguly, and A. K. Santra, “Synthesis and characterization of TiO2-water nanofluids with different surfactants,”

International Communications in Heat and Mass Transfer, Vol. 75, pp. 341-348, July. 2016.

[25] Z. Said, M. A. Sabiha, R. Saidur, A. Hepbasli, N. A. Rahim, S. Mekhilef, and T. A. Ward, “Performance enhancement of a Flat Plate Solar collector using Titanium dioxide nanofluid and Polyethylene Glycol dispersant,”

Journal of Cleaner Production, Vol. 92, pp. 343-353, April. 2015.

145

[26] M. A. Khairul, K. Shah, E. Doroodchi, R. Azizian, and B. Moghtaderi,

“Effects of surfact on stability and thermo-physical of metal oxide nanofluids,” International Journal of Heat and Mass Transfer, Vol. 98, pp.

778-787, July. 2016.

[27] S. Witharana, I. Palabiyik, Z. Musina, and Y. Ding, “Stability of glycol nanofluids-The theory and experiment,” Powder Technology, Vol. 239, pp.

72-77, May. 2013.

[28] I. Madni, C. Y. Hwang, S. D. Park, Y. H. Choa, and H. T. Kim, “Mixed surfactant system for stable suspension of multiwalled carbon nanotubes,”

Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol.

358, pp. 101-107, April. 2010.

[29] Y. Ding, H. Alias, D. Wen, and R. A. Williams, “Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids),” International Journal of Heat and Mass Transfer, vol. 49, pp. 240-250, January. 2006.

[30] S. Jana, S. Amin, and W. Zhong, “Enhancement of fluid thermal conductivity by the addition of single and hybrid nano-additives,”

Thermochimica Acta, Vol. 462, pp. 45-55, October. 2007.

[31] M. Chopkar, S. Kumar, D. R. Bhandari, P. K. Das, and I. Manna,

“Development and characterization of Al2Cu and AgAl nanoparticle dispersed water and ethylene glycol based nanofluid,” Materials Science and Engineering: B, Vol. 139, pp. 141-148, May. 2007.

[32] L. Chen, M. Cheng, D. Yang, and L. Yang, “Enhanced thermal conductivity of nanofluid by synergistic effect of multi-walled carbon nanotubes and

146

Fe2O3 nanoparticles,” Applied Mechanics and Materials, Vol. 548-549, pp.118-123, April. 2014.

[33] S. S. J. Aravind, and S. Ramaprabhu, “Graphene-multiwalled carbon nanotube-based nanofluids for improved heat dissipation,” RSC Advances, Vol. 13, 2013.

[34] T. T. Baby, and R. Sundara, “Synthesis and Transport Properties of Metal Oxide Decorated Graphene Dispersed Nanofluids,” The Journal of Physical Chemistry C, vol. 115, pp. 8527-8533, April. 2011.

[35] M. S. Liu, M. C. C. Lin, C. Y. Tsai, and C. C. Wang, “Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method,” International Journal of Heat and Mass Transfer, vol. 49, pp.

3028-3033, August. 2006.

[36] D. H. Yoo, and H. S. Yang, “Study of thermal conductivity of nanofluids for the application of heat transfer fluids,” Thermochimica Acta, vol. 455, pp.

66-69, April. 2007.

[37] A. M. Husseim, H. K. Dawood, R. A. Bakara, and K. Kadirgamaa,

“Numerical study on turbulent forced convective heat transfer using nanofluids TiO2 in an automotive cooling system,” Case Studies in Thermal Engineering, vol. 9, pp. 72-78, March. 2017.

[38] Z. Hajjar, A. M. Rashidi, and A. Ghozatloo, “Enhanced thermal conductivities of graphene oxide nanofluids,” International Communications in Heat and Mass Transfer, vol. 57, pp. 128-131, October.

2014.

147

[39] S. U. S. Choi, W. Yu, J. R. Hull, Z. G. Zhang, and F. E. Lockwood,

“Nanofluids for Vehicle Thermal Management,” Journal Article, vol.111, pp.

38-43, 2002.

[40] T. K. Houg, and H. S. Yang, “Study of the enhanced thermal conductivity of Fe nanofluids,” Journal of Applied Physics, vol. 97, pp. 609-735, March.

2005.

[41] H. E. Patel, S. K. Das, T. Sundararajan, A. S. Nair, B. George, and T. Pradeep,

“Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids : Manifestation of anomalous enhancement and chemical,” Applied Physics Letters, vol. 83, pp. 2931-2933, October.

2003.

[42] H. Xia, J. Wang, T. Xi, Y. Liu, F. Ai, Q. Wu, “Thermal conductivity enhancement of suspensions containing nanosized alumina particles,”

Journal of Applied Physics, vol. 91, pp. 4568-4572, April. 2002.

[43] X. Zhou, J. Ren, E. Brown, D. Schneider, Y. C. Lopez and J. J. Galligan,

“Pharmacological properties of nicotinic acetylcholine receptors expressed by guinea pig small intestinal myenteric neurons,” Journal of Pharmacoiogy and Experimental Therapeutics, vol. 302, pp. 889-897, Septenber. 2002.

[44] S. M. S. Murshed, K. C. Leong, and C. Yang, “Enhanced thermal conductivity of TiO2 – water based nanofluids,” International Journal of Thermal Sciences, vol. 44, pp. 367-373, April. 2005.

[45] M. J. Assael, C. F. Chen, I. Metaxa, W. A. Wakeham, “Thermal conductivity of suspensions of carbon nanotubes in water,” International Journal of

148

Thermophysics, vol. 25, pp. 971-985, July. 2004.

[46] S. M. Peyhambarzadeh, S. H. Hashemabadi, M. S. Jamnani, and S. M.

Hoseini, “Improving the cooling performance of automobile radiator with Al2O3/water nanofluid,” Applied Thermal Engineering, vol. 31, pp. 1833-1838, Pages. 2011.

[47] A. M. Hussein, R. A. Bakar, K. Kadirgama, and K. V. Sharma, Heat transfer enhancement using nanofluids in an automotive cooling system,”

International Communications in Heat and Mass Transfer, vol. 53, pp. 195-202, April. 2014.

[48] Y. H. Hung, W. P. Wang, Y. C. Hsu, and T. P. Teng, “Performance evaluantion of an air-cooled heat exchange system for hybrid nanofluids,”

Experimental Thermal and Fluid Science, vol. 81, pp. 43-55, February. 2017.

[49] B. M’hamed, N. A. C. Sidik, M. F. A. Akhbar, R. Mamat, and G. Najafi,

“Experimental study on thermal performance of MWCNT nanocoolant in Perodua Kelisa 1000cc radiator system,” International Communications in Heat and Mass Transfer, vol. 76, pp. 156-161, Auges. 2016.

[50] H. M. Ali, H. Ali, H. Liaquat, H. T. B. Maqsood, and M. A. Nadir,

“Experimental investigation of convective heat transfer augmentation for car radiator using ZnO-water nanofluids,” Energy, vol. 84, pp. 317-324, May. 2015.

[51] S. M. Peyghambarzaden, S. H. Hashemabadi, M. Naraki, and Y.

Vermahmoudi, “Experimental study of overall heat transfer coefficient in the application of dilute nanofluids in the car radiator,” Applied Thermal

149

Engineering, vol. 52, pp. 8-16, April. 2013.

[52] C. Cuevas, D. Makaire, L. Dardenne, and P. Ngendakumana, “Thermo-hydraulic characterization of a louvered fin and flat tuble heat exchanger,”

Experimental Thermal and Fluid Science, vol. 35, pp. 154-164, January.

2011.

[53] D. Sandhya, M. Chandra Sekhara Reddy, and V. Vasudeva Rao “ Improving the cooling performance of automobile radiator with ethylene glycol water based TiO2 nanofluids” International Communications in Heat and Mass Transfer, vol.78, pp.121-126, November. 2016

[54] S. Ali Ahmed, M. Ozkaymak, A. Sözen, T.Menlik, and A. Fahed,

“ Improving car radiator performance by using TiO2-water nanofluid”

Engineering Science and Technology, an International Journal,vol.21, pp.996-1005, October. 2018.

[55] D. G. Subhedar, B. M. Ramani, B. M. Ramani, and A. Gupta,“Experimental investigation of heat transfer potential of Al2O3/Water-Mono Ethylene Glycol nanofluids as a car radiator coolant ” Case Studies in Thermal Engineering, vol.11, pp.26-34, March. 2018

[56] K.Y.Leong, R.Saidur, S.N.Kazi,and A.H.Mamun, “Performance investigation of an automotive car radiator operated with nanofluid-based coolants (nanofluid as a coolant in a radiator) ” Applied Thermal Engineering ,vol.30, pp.2685-2692, December. 2010

[57] A. M. Hussein, R. A. Bakar,and K. Kadirgama, “Study of forced convection nanofluid heat transfer in the automotive cooling system ” Case Studies in

150

Thermal Engineering, vol.2, pp.50-61, March. 2014.

[58] F. Micali, M. Milanese , G. Colangelo , and A. Risi ,“ Experimental investigation on 4-strokes biodiesel engine cooling system based on nanofluid” Renewable Energy, vol.125, pp.319-326, September. 2018.

[59] Z. Said, M. E. H. Assad, A. A. Hachicha, E. Bellos, M. A. Abdelkareem, D.

Z. Alazaizeh, and B. A. A. Yousef, “Enhancing the performance of automotive radiators using nanofluids” Renewable and Sustainable Energy Reviews, vol.112, pp.183-194, September. 2019.

[60] A. M. Elsaid, “Experimental study on the heat transfer performance and friction factor characteristics of Co3O4 and Al2O3 based H2O/(CH2OH)2

nanofluids in a vehicle engine radiator” International Communications in Heat and Mass Transfer, vol.108, pp.104-263, November. 2019.

[61] ASTM G99-95a, Standard test method for wear testing with a pin-on-disk apparatus, 2000.

[62] 機車腳踏車燃料消耗量試驗方法,行政院環保署,2009年。

151

符號釋義

t Time, s m weight, kg r Wheel radius, m n Empirical factor 𝜂 Viscosity, mPa∙s

k Thermal Conductivity, W/m∙K 𝜇 Coefficient of Friction

𝛹 Mass-Surface Ratio of Particle 𝜙 Volume Fraction, vol.%

𝜔 Concentration , wt.%

𝜆 Concentration , ppm、vol.%

V Velocity, km/h M Mass , mg

C Fuel Consumption, km/L D Distance, km

A Vehicle Area , m2

AU Global Heat Transfer Coefficient, W K−1 c Specific Heat, J kg−1 K−1

152

M Fin Parameter Mass Flow Rate, kg s−1 NTU Number of transfer units

Nu Nusselt number P Perimeter Pr Prandtl Number Q Heat Hlow, W

R Thermal Resistance, K W−1 Re Reynolds Number

t Temperature, °C

T Tube or Temperature, K V Volumetric Flow Rate, l/h Δ Difference

δ Thickness, m

ε Efficiency or Roughness, m θ Louver Angle, deg

ρ Density, kg m−3

σ Free-Flow Area to Frontal Area Ratio Ф Error to Minimize

相關文件