• 沒有找到結果。

微藻生質柴油未來發展的建議

第五章 結論與建議

5.2 建議

5.2.2 微藻生質柴油未來發展的建議

生產的經濟性是利用微藻生產生質柴油所要面對的最大問題。當然,

吾人不能僅僅從經濟效益方面來考慮生產,另外,環境效益和社會效益也 是極其重要的。儘管藻類生質柴油的研究已有很大進展,但要成為可行的 替代能源,仍存有的主要問題待解決,包括:(1)生產過程中藻液的機械攪 拌、離心採收和乾燥等能耗很高,能量的投入、產出不夠經濟;(2)以生產 能源為目的微藻養殖規模巨大,大量的廢培養液如果處理不當,會造成嚴 重的環境污染;(3)生產成本高,不能與石化原油競爭等。而經由本論文的 經濟評估與敏感度分析的結果,依此提出未來能源藻類發展的建議如下:

1. 提生藻類光合作用效率及其油脂含量:需要解決微藻最佳的培養條 件和最低的成本、消耗,即選擇合適的光照方式,提高光能利用率;

應用基因及代謝工程技術促進藻類油脂含量與藻體產量,此技術之 突破將對於油脂生產成本有重大的影響,這些包括:

(1) 增加光合效率以增加藻體生長量。

(2) 增進藻類生長速率。

(3) 增加藻體內油脂含量。

(4) 改善藻類熱忍受性以減少冷卻之投入成本。

(5) 消除光飽和現象(Light saturation phenomenon),以使藻類能於光 強度增加的情況持續提高生長速率。

(6) 降低常發生於溫帶及熱帶地區中午時因強烈光強度造成藻類生 長速率減緩的光抑制(Photo-inhibition)效應。

(7) 降低對藻細胞造成損害之光氧化(Photo-oxidation)敏感性。

2. 開發合適及便宜的培養系統,達到最大的培養密度:如提高反應器 內質傳效率和混合效果,避免或降低光抑制現象對微藻的損害;利 用過程工程手段解決微藻高密度培養的瓶頸問題;開發便宜的反應 器替代材質,降低反應器建造成本。

3. 研發不需乾燥即可萃取藻油的技術:藻類在水中生長,進行生質柴 油轉化前需將其從水中分離出來,並將油脂萃取,需要特定採收、

乾燥及萃取的設備,能耗也很大,進一步增加了投資。

4. 藻體高單價物質開發及綜合利用:藻類生長繁殖要求條件高,前期 投資比較大,需開發利用微藻體內各項有價物質及用途,提升經濟 競爭力。

5. 微藻固定二氧化碳機理探索:重點是瞭解無機碳的利用形式、二氧 化碳濃縮機理以及高濃度二氧化碳對微藻生長的影響,高效固定二 氧化碳的藻種篩選和培養,未來可與廢CO2來源結合,降低成本。

參考文獻

中文部份

王偉修,「MF 薄膜堵塞現象之探討」,國立成功大學,碩士論文,民國 92 年。

威佛(Weaver Samuel C.),威斯頓(Weston J. Fred),財務會計管理(Finance And Accounting For Nonfinancial Managers)

徐明光,

, 黃 嘉 斌 譯 , 麥 格 羅 . 希 爾 (McGraw-Hill)出版,台北,民國91年。

台灣的淡水浮游藻(I)-通論及綠藻(1) 第3期,101-105頁,民國96年。

Biofuels Digest, “Algae bloom:two organizations and countless companies strive to bring the dream of algae biofuels to life”, Biofuels Digest, 2008(9).

http://biofuelsdigest.com/blog2/2008/09/24/algae-bloom-two-organizations-a nd-countless-companies-strive-to-bring-the-dream-of-algae-biofuels-to-life/

Biofuels Digest, “Solazyme produces the first ASTM spec aviation kerosene from algae”, Biofuels Digest, 2008(9).

http://www.biofuelsdigest.com/blog2/2008/09/10/solazyme-produces-the-firs t-astm-spec-aviation-kerosene-from-algae/

Bold, H. C., and Wynne M. J., “Introduction to the Algae:structure and reproduction. 2nd ed”, Prentice Hall, Englewood Cliffs, New Jersey,1985.

Borodyanski, G. and Konstantinov, I., “ Microalgae separator apparatus and method”, United States Patent 6524486, 2003.

Borowitzka, M.A., “Algal growth media and sources of cultures. in Micro-Algal

Biotechnology”, Cambridge University Press, Cambridge, pp. 257-287, 1988.

British Petroleum, “BP statistical review of world energy 2006” , 2007.03.01.

Carvalho, A.P., Meireles, L.A. and Malcata, F.X., “Microalgal reactors:A review of enclosed system designs and performances”, Biotechnol. Prog., 22, pp.

1490-1506, 2006..

Chi, Z. Y., Y. Liu, C. Frear, and S. L. Chen., “Study of a two-stage growth of DHA-producing marine algae Schizochytrium limacinum SR21 with shifting dissolved oxygen level”, Appl. Microbiol. Biotechnol., 81 (6), pp. 1141-1148, 2009.

Chisti, Y., “Biodiesel from microalgae. Biotechnol”, Adv. , 25 (3), pp. 294-306, 2007.

Chisti, Y., “Biodiesel from microalgae beats bioethanol”, Trends Biotechnol., 26 (3), pp. 126-131, 2008.

De Swaaf, M.E., Sijtsma, L., Pronk, J.T., ”High-cell-density fed-batch cultivation of the docosahexaenoic acid producing marine alga Crypthecodinium cohnii”, Biotechnol. Bioeng., 81, pp. 666-672, 2003.

Erilsson L., “Direct influence of wastewater pollutants in flocculation and

sedimentation behavior in biological wastewater treatment-I model system E.

coli B”, Water Res., 15 (4), pp. 421-431, 1981.

Fabregas, J., Otero, A., Maseda, A. and Dominguez, A., “Two-stage cultures for the production of astaxanthin from Haematococcus pluvialis”, J. Biotechnol.

89 (1), pp. 65-71, 2001.

Green Energy Trends, “ biofuels has big plans for algae ethanol”, Green Energy Trends, 2008(6).

http://greenenergytrends.com/stream/algenol-biofuels-has-big-plans-for-alga e-ethanol-105.html

Hu, Q., “Handbook of Microalgal Culture : biotechnology and applied phycology”, Edited by A. Richmond: Oxford: Blackwell Science, 2004.

Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., and Darzins, A., “Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances”, Plant J., 54(4), pp. 621-639, 2008.

Huang, Y.M. and Rorrer, G.L., “Cultivation of microplantets derived from the marine red alga Agatdhiella subulata in a stirred tank photobioreactor”, Biotechnol. Prog., 19 (2), pp. 418-427, 2003.

Huntley, M. E., Redahe, D. G., “CO2 mitigation and renewable 0il from photosynthetic microbes:a new appraisal“, Mitigation and Adaptation Strategies for Global Change, 12 (4), pp. 573-608, 2007.

Kakii, K., “Effect of calcium ion on sludge characteristics”, Ferment Bioeng., 63 (3), pp. 263-270, 1985.

Lee Lee, Y.K., Ding, S.Y., Low, C.S., “Design and performance of an α-type tubular photoreactor for mass cultivation of microalgae”, J. Appl. Phycol., 7, pp. 47-51, 1995.

Li, Q., Du, W., and Liu, D., “Perspectives of microbial oils for biodiesel production”, Appl. Microbiol. Biotechnol. 80 (5), pp. 749-756, 2008.

McFarland, J.R., Reilly, J.M. and Herzog, H.J., “Representing energy

technologies in top-down economic models using bottom-up information”, Energy Economics, 26, pp. 685-707, 2004.

Megreor W. C., “Factors afecting the flocculation of bacteria by chemical additives”, Biotechnol Bioeng., l1 (2), pp. 127-l38, 1969.

Metting, F. B., “Biodiversity and application of microalgae”, J. Ind. Microbiol., 17, pp. 477-489, 1996.

Miao, X., and Wu, Q., “Biodiesel production from heterotrophic microalgal oil”, Bioresour. Technol., 97, pp. 841-846, 2006.

Miyamoto, K., Wable, O., Benemann, J.R., “Vertical tubular reactor for microalgae cultivation”, Biotechnol. Lett., 10, pp. 702-708, 1988.

Najafpour, G., “Biochemical Engineering and Biotechnology”, Elsevier Science, 2007.

Ondrey, G., “Chementator:algae-based biodiesel”, Chemical Engineering, 2., pp.

545-546, 2008.

Pedroni, P., Davison, J., Beckert, H., Bergman, P., Benemann, J., “A proposal to establish an internal network on biofixation of CO2 and greenhouse gas

abatement with microalgae”, Presented at Greenhouse gas R&D Programme Workshop, pp. 1-15, 2002.

Pirt, S.J., Lee, Y.K., Walach, M.R., Pirt, M.W., Balyuzi, H.H.M., Bazin, M.J.,

“ A tubular photobioreactor for photosynthetic production of biomass from carbon dioxide:design and performance”, J. Chem. Tech. Biotechnol., 33B, pp. 35-38, 1983.

Pulz, O., “Photobioreactors:Production Systems for Phototrophic

Microorganisms”, Appl. Microbiol Biotechnol., 57, pp. 287-293, 2001.

Ramos de Ortega, A., Roux, J.C., “Production of Chlorella biomass in different types of flat bioreactors in temperate zones”, Biomass, 10, pp. 141-156, 1986.

Renewable Energy World, “International energy developing algae to oil for many applications”, Renewable Energy World, 2007(5).

http://www.renewableenergyworld.com/rea/news/article/2007/11/internation al-energy-developing-algae-to-oil-for-many-applications-50499.

Renewable Energy World, “REG announces commercialization of technology for algaebased fuel”, Renewable Energy World, 2008(4).

http://www.renewableenergyworld.com/rea/news/article/2008/08/reg-announ ces-commercialization-of-technology-for-algae-based-fuel-53387.

Sánchez Miron, A., Cerón García Camacho, F., Molina Grima, E., Chisti, Y.,

“Growth and characterization of microalgal biomass produced in bubble column and airlift photobioreactors:studies in fed-batch culture”, Enzyme Microb. Technol., 31, pp. 1015-1023, 2002.

Sánchez Mirón A., Cerón García M-C., Contreras Gómez A., García Camacho F., Molina Grima E., Chisti Y.,”Shear stress tolerance and biochemical characterization of Phaeodactylum tricornutum in quasi steady-state continuous culture in outdoor photobioreactors”, Biochem. Eng. J., 16, pp.

287-297, 2003.

Sawayama S., Inoue S., Dote Y., Yokoyama S-Y., “CO2 fixation and oil production through microalga”, Energy Convers Manag., 36, pp.729-731, 1995.

Sazdanoff N., “Modeling and simulation of the algae to biodiesel fuel cycle”, Undergraduate Thesis submitted to Ohio State University, 2006. http://hdl.handle.net/1811/5981.

Schenk, P. M., Thomas-Hall, S. R., Stephens, E., Marx, U. C., Mussgnug, J. H., Posten, C., Kruse, O., and Hankamer, B., “Second generation biofuels:

high-efficiency microalgae for biodiesel production”, Bioenerg. Res., 1 (1), pp.

20-43, 2008.

Sheehan, J., Dunahay, T., Benemann, J., Roessler, P., “A look back at the U.S.Department of Energy's Aquatic Species Program—biodiesel from algae”, National Renewable Energy Laboratory, Golden, CO; 1998. Report NREL/TP, 1998.

Shen, Y., Yuan, W., Pei, Z.J., Wu, Q. and Mao, E., “Microalgae mass

production methods”, Transactions of the ASABE, 52, pp. 1275-1287, 2009.

Spolaore, P., Joannis-Cassan, C., Duran E. and Isambert, A., “Commercial

applications of microalgae”, Journal of Bioscience and Bioengineering, 101, pp. 87-96, 2006.

Terry, K.L, Raymond, L.P., “System design for the autotrophic production of microalgae”, Enzyme Microb. Technol., 7, pp. 474-487, 1985.

Torzillo, G., Carlozzi, P., Pushparaj, B., “A two-plane tubular photobioreactor for outdoor culture of spirulina”, Biotechnol. Bioeng., 42, pp. 891-898, 1993.

Weissman, J. C.and Goebel, R. P., “Design and analysis of microalgal open pond systems for the purpose of producing fuels”, Subcontract Report of U.S.

Department of Energy, pp.34-78, 1987.

Worldwide Refining Business Digest Weekly, “Sapphire energy produces green gasoline from algae”, Worldwide Refining Business Digest Weekly, 35, pp.

14-17, 2008(6).

Yun Y.S., Lee S.B, Park J.M., Lee C.I., Yang J.W., “Carbon dioxide fixation by algal cultivation using wastewater nutrients”, J. Chem. Technol. Biotechnol., 69, pp. 451-455, 1997.

Zhang, D. H., and Lee, Y. K., “Two-step process for ketocarotenoid production by a green alga, Chlorococcum sp. strain MA-1”, Appl. Microbiol.

Biotechnol., 55 (5), pp. 537-540, 2001.

Zhu, Z., Graham, P., Reedman, L. and Lo, T., “A scenario-based integrated approach for modeling carbon price risk”, Decisions in Economics and Finance, 32, pp. 35-48, 2009.