• 沒有找到結果。

第5章 結論與建議

5.2 建議與未來展望

針對本研究中以火炎演算法及密度泛函理論模擬二氧化鈦奈米團簇 提出幾個建議,作為未來改進之參考,使得相關之研究更為完善。

1. 火炎演算法部份由於使用較簡化的勢能,所以搜尋出來之結構與密度 函理論計算之結構仍有一段差距,可使用較為複雜之勢能縮短收斂 結果上的差異

2. 火炎演算法在搜尋時容易找出對稱高之結構,但不見得是最穩定之結 構。可以選用其他演算法尋找更穩定之結構

3. 可研究其他應用廣泛之觸媒材料其奈米團簇之特性,如二氧化鈰。

作 者

姓名: 張慶昇

民國 72 年 6 月 29 日生 學歷:

國立中山大學學士 92/9-95/6 國立中山大學碩士 95/9-97/6

個 人 著 作

國際期刊

1. Jee-Gong Chang; Shin-Pon Juand Ching-Sheng Chang. “A Computational Study on Adsorption Configurations and Dissociative Reactions of HN3 Molecule on TiO2 Anatase (101) Surface” J. Phys. Chem. C. (Revised)

2. Jee-Gong Chang; Shin-Pon Juand Ching-Sheng Chang. “Adsorption

configuration and dissociative reaction of NH3 on anatase (101) surface with and without hydroxyl group” J. Phys. Chem. C. (submitted)

3. Hui-Lung Chen; Shin-Pon Ju; Jee-Gong Chang and Ching-Sheng

Chang. “Structural properties of CenO2n (n=1-5) nanoparticle : Molecular Mechanics and First Principle studies” Chin. J. Catal. (2008) (In Press) 國際研討會

1. Jee-Gong Chang; Shin-Pon Ju; Jian-Ming Luand Ching-Sheng

Chang. “Adsorption and Reaction of Hydrazoic Acid on TiO2 anatase (101) surface by first-principals calculation” 第四屆國際量子工程科學會議. 2006/7/8 2. Jee-Gong Chang; Shin-Pon Ju; Jian-Ming Lu; Ching-Sheng Chang and M. C.

Lin. “Adsorption and Reaction of Ammonia on TiO2 anatase (101) surface and rutile(110) by first-principals calculation” Joint symposiums on Chemical Kinetics and Renewable Energy: from Gas Phase to Condensed Phase. 2007/6/5-9

3. Shin-Pon Ju; Hui-Lung Chen; Jee-Gong Changand Ching-Sheng

國內研討會

1. 張自恭,盧建銘,朱訓鵬,張慶昇 “Adsorption and Reaction of Ammonia on TiO2 anatase (101) surface by first-principals calculation” 第一屆台灣氫能與燃 料電池學術研討會 2006/11/1~2

2. 朱訓鵬,陳輝龍,張自恭,翁盟雄,張慶昇 “運用第一原理計算研究二氧化 鈦奈米顆粒之結構與電性分析” 精密機械與製造科技研討會 2008/5/23~25

參考文獻

[1] J. Yuan, X. Liu, O. Akbulut, J. Hu, S. L. Suib, J. Kong and F. Stellacci,

"Superwetting nanowire membranes for selective absorption " Nat.

Nanotechnol. 3, 332 - 336 (2008).

[2] J.-H. Park, G. v. Maltzahn, L. Zhang, Michael P. Schwartz, E. Ruoslahti, S.

N. Bhatia and M. J. Sailor, "Magnetic Iron Oxide Nanoworms for Tumor Targeting and Imaging," Adv. Mater. 20, 1630-1635 (2008).

[3] Y. M. Hon, K. Z. Fung and M. H. Hon, "Effect of Temperature and Atmosphere on Phase Stability and Morphology of LiMn2O4 Powder Synthesized by Citric Acid Gel Process," J. Ceram. Soc. Jpn. 10 (5), 462-468 (2000).

[4] Y. M. Hon, H. Y. Chung, K. Z. Fung and M. H. Hon, "NMR and FTIR Investigation of Spinel LiMn2O4 Cathode Prepared by Citric Acid Gel Process," J. Solid. State. Chem. 160, 368-376 (2001).

[5] F.-C. Wu, C.-C. Wan, Y.-Y. Wang, L.-D. Tsai and K.-L. Hsueh,

"Improvement of Pt-Catalyst Dispersion and Utilization for Direct Methanol Fuel Cells Using Silane Coupling Agent," J. Electrochem. Soc.

154 (6), 528-532 (2007).

[6] M. Grätzel, "Photoelectrochemical cells," Nature. 414 (15), 338-344 (2001).

[7] A. Vittadini, A. Selloni, F. P. Rotzinger and M. Gratzel., "Formic Acid Adsorption on Dry and Hydrated TiO2 Anatase (101) Surfaces by DFT Calculations," J. Phys. Chem. B. 104, 1300-1306 (2000).

hybrid HF-DFT computations," Surf. Sci. 582, 49-60 (2005).

[9] Santos, C. dos, Z. Schpector, Julio, Imamura and P. M., "Chemical transformation of abietic acid to new chiral derivatives," J. Braz. Chem.

Soc. 14, 6 (2003).

[10] J. H. Park, Y. Jun, H.-G. Yun, S.-Y. Lee and M. G. Kang, "Fabrication of an efficient dye-sensitized solar cell with stainless steel substrate " J.

Electrochem. Soc. 155 (7), F145-F149 (2008 ).

[11] L. Zou and Y. Luo, "Removal of VOCs by photocatalysis process using adsorption enhanced TiO2–SiO2 catalyst," Chem. Eng. Process. 45, 959-965 (2006).

[12] T. A. McMurray., P. S. M. Dunlop and J. A. Byrne, "The photocatalytic degradation of atrazine on nanoparticulate TiO2 films," J. Photochem.

Photobiol., A. 182, 43-51 (2006).

[13] A. B. Araujo, O. P. A. Junior, E. M. Vieira, J. P. S. Valente, P. M. Padilha and A. O. Florentino, "Photodegradation of Soluble and Emulsive Cutting Fluids using TiO2 as Catalyst," J. Braz. Chem. Soc. 17 (4), 737-740 (2006).

[14] C. A. Rives S and D.-B. F, "Growth of Co isolated clusters in the gas phase: Experiment and molecular dynamics simulations " Phys. Rev. B.

77 (8), 085407.

[15] D. F, H. S and X. Y, "Experimental and theoretical study of the reactions between neutral vanadium oxide clusters and ethane, ethylene, and acetylene " J. Am. Chem. Soc. 130 (6), 1932-1943 (2008).

[16] E. R. B. Yoshiyuki Matsuda, "On the Titanium Oxide Neutral Cluster

(2005).

[17] L. S. W. Hongbin Wu, "Electronic structure of titanium oxide clusters:

TiOy (y=1-3) and (TiO2)n (n=1-4)," J. Chem. Phys 107 (20), 8221-8228 (1997).

[18] K. Demyk, D. V. Heijnsbergen, G. v. Helden and G. Meijer,

"Experimental study of gas phase titanium and aluminum oxide clusters,"

Astron Astrophys 420, 547-552 (2004).

[19] R. B. F. Wen Yu, "Formation and Fragmentation of Gas-Phase Titanium/Oxygen Cluster Positive Ions," J. Am. Chem. SOC. 112, 7126-7133 (1990).

[20] Z. H. J and W. L. S., "Probing the Electronic Structure and Band Gap Evolution of Titanium Oxide Clusters (TiO2)n- (n = 1-10) Using Photoelectron Spectroscopy " J. Am. Chem. Soc. 129 (10), 3022-3026 (2007).

[21] K. L. Yeung, A. J. Maira, J. Stolz, E. Hung, N. K.-C. Ho, A. C. Wei, J.

Soria, K.-J. Chao and P. Yue, "Ensemble effects in nanostructured TiO2 used in the gas-phase photooxidation of trichloroethylene," J. Phys. Chem.

B. 106, 4608-4616 (2002).

[22] A. Fujishima and K. Honda, "Electrochemical Photolysis of Water at a Semiconductor Electrode " Nature. 238, 37 - 38 (1972).

[23] 申泮文 and 車雲霞, "無機化學叢書," 北京:科學出版社 第八卷 (1998).

[24] "http://puregreencoatings.com/images/pgc_science.png."

[25] A. Eichler, F. Mittendorfer and J. Hafner, "Precursor-mediated

[26] R. Schaub, P. Thostrup, N. Lopez, E. Laegsgaard, I. Stensgaard, J. K.

Norskov and F. Besenbacher, "Oxygen Vacancies as Active Sites for Water Dissociation on Rutile TiO2(110)," Phys. Rev. Lett. 87 (26), 266104 (2001).

[27] J. A. White, D. M. Bird and M. C. Payne, "Dissociation of H2 on W(100)," Phys. Rev. B. 53 (3), 1667 (1996).

[28] J. Harris and S. Andersson, "H2 Dissociation at Metal Surfaces," Phys.

Rev. Lett. 55 (15), 1583 (1985).

[29] P. A. Gravil, D. M. Bird and J. A. White, "Adsorption and Dissociation of O2 on Ag(110)," Phys. Rev. Lett. 77 (18), 3933 (1996).

[30] K. Honkala and K. Laasonen, "Oxygen Molecule Dissociation on the Al(111) Surface," Phys. Rev. Lett. 84 (4), 705 (2000).

[31] K. Kato and T. Uda, "Chemisorption of a single oxygen molecule on the Si(100) surface: Initial oxidation mechanisms," Phys. Rev. B. 62 (23), 15978 (2000).

[32] D. A. Outka, J. Stohr, W. Jark, P. Stevens, J. Solomon and R. J. Madix,

"Orientation and bond length of molecular oxygen on Ag(110) and Pt(111): A near-edge x-ray-absorption fine-structure study," Phys. Rev. B.

35 (8), 4119 (1987).

[33] J. T. Stuckless, C. E. Wartnaby, N. Al-Sarraf, S. J. B. Dixon-Warren, M.

Kovar and D. A. King, "Oxygen chemisorption and oxide film growth on Ni(100), (110), and (111): Sticking probabilities and microcalorimetric adsorption heats," J. Chem. Phys. 106 (5), 2012 (1997).

[34] Y. Xu and M. Mavrikakis, "Adsorption and dissociation of O2 on

[35] A. R. H. F. Ettema, C. F. Murtagh and H. I. Starnberg, "Photoemission spectroscopy study of the charge accumulation at the K3Sb:Cs surface,"

Surf. Sci. 175, 101-104 (2001).

[36] Y. Jiang and J. B. Adams, "First principle calculations of benzotriazole adsorption onto clean Cu(111)," Surf. Sci. 529, 428-442 (2003).

[37] F. Mittendorfer and J. Hafner, "A DFT study of the adsorption of thiophene on Ni(100)," Surf. Sci. 492, 27-33 (2001).

[38] S. Hong and H. Kim, "theoretical study of the bias-dependent scanning tunneling microscopy images of Pyridine on Ge(001)," J. Korean. Phys.

Soc. 49 (6), 2362-2366 (2006).

[39] A. Tilocca and A. Selloni, "Structure and reactivity of water layers on defect-free and defective anatase TiO2(101) surfaces," J. Phys. Chem. B.

108, 4743-4751 (2004).

[40] I. Onal, S. Soyer and S. Senkan, "Adsorption of water and ammonia on TiO2-anatase cluster models," Surf. Sci. 600, 2457-2469 (2006).

[41] F. Allegretti, S. O. Brien, M. Polcik, D. I. Sayago and D. P. Woodruff,

"Adsorption bond length for H2O on TiO2(110): A key parameter for theoretical understanding," Phys. Rev. Lett. 95, 226104 (2005).

[42] J. Goniakowski and M. J. Gillan, "the adsorption of H2O on TiO2 and SnO2(110) studied by first-principles calculations," Surf. Sci. 350, 145-158 (1996).

[43] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, "Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides " Science. 293, 269-271 (2001).

Chem. B. 109, 5133 (2005).

[45] J. S. Lin, W. C. Chou, S. Y. Lu, G. J. Jang, B. R. Tseng and Y. T. Li,

"Density Functional Study of the interfacial electron transfer pathway for monolayer adsorbed InN on the TiO2 anatase (101) surface," J. Phys.

Chem. B. 110, 23460-23466 (2006).

[46] P. Persson, J. C. M. Gebhardt and S. Lunell, "The Smallest Possible Nanocrystals of Semiionic Oxides," J. Phys. Chem. B. 107, 3336-3339 (2003).

[47] M. J. Lundqvist, M. Nilsing, P. Persson and S. Lunell, "DFT study of bare and dye-sensitized TiO2 clusters and nanocrystals," Int. J. Quantum Chem. 106 (15), 3214-3234 (2006).

[48] C. Roberts and R. L. Johnston, "Investigation of the structures of MgO clusters using a genetic algorithm," Phys. Chem. Chem. Phys. 3, 5024 - 5034 (2001).

[49] S. Hamad, C. R. A. Catlow and S. M. Woodley, "Structure and Stability of Small TiO2 Nanoparticles " J. Phys. Chem. B. 109, 15741-15748 (2005).

[50] S. M. Woodley, A. A. Sokol and C. R. A. Catlow, "Structure Prediction of Inorganic Nanoparticles with Predefined Architecture using a Genetic Algorithm," Z. Anorg. Allg. Chem. 630, 2343-2353 (2004).

[51] G. S. Shafai, S. Shetty, S. Krishnamurty, V. Shah and D. G. Kanhere,

"Density functional investigation of the interaction of acetone with small gold clusters," J. Chem. Phys. 126, 014704 (2007).

[52] S. F. Li, X. Xue, G. Chen, D. W. Yuan, Y. Jia and X. G. Gong, "Ab initio

[53] Q. Zeng, X. Jiang, A. Yu and G. Lu, "Growth mechanisms of silver nanoparticles: a molecular dynamics study," Nanotechnology 18, 035708 (2007).

[54] S. Chrétien and H. Metiu, "Density functional study of the interaction between small Au clusters, Aun(n=1-7) and the rutile TiO2 surface. II.

Adsorption on a partially reduced surface," J. Chem. Phys. 127, 244708 (2007).

[55] M. Boronat, P. Concepción, A. Corma, S. Gonzlez, F. Illas and P. Serna,

"A Molecular Mechanism for the Chemoselective Hydrogenation of Substituted Nitroaromatics with Nanoparticles of Gold on TiO2 Catalysts:

A Cooperative Effect between Gold and the Support," J. Am. Chem. Soc.

129 (51), 16230 -16237 (2007).

[56] J. Irving and J. Kirkwood, "The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics," J. Chem.

Phys. 18, 817 (1950).

[57] J. Haile, "Dynamics simulation: Elementary Methods," John Wiley &

Sons, Inc.: New York. (1997).

[58] M. Matsui and M. Akaogi., "Molecular dynamics simulation of the structural and physical properties of the four polymorphs of TiO2," Mol.

Simul. 6, 239 (1991).

[59] A. V. Bandura and J. D. Kubicki, "Derivation of Force Field Parameters for TiO2-H2O Systems from ab Initio Calculations," J. Phys. Chem. B.

107, 11072-11081 (2003).

[60] N. A. Deskins, S. Kerisit, K. M. Rosso and M. Dupuis, "Molecular

[61] V. Pischedda, G. R. Hearne, A. M. Dawe and J. E. Lowther,

"Ultrastablility and Enhanced Stiffness of ~6nm TiO2 Nanoanatase and Eventual Pressure-Induced Disorder on the Nanometer Scale," Phys. Rev.

Lett. 96 (035509) (2006).

[62] V. N. Koparde and P. T. Cummings, "Molecular Dynamics Simulation of Titanium Dioxide Nanoparticle Sintering," J. Phys. Chem. B. 109, 24280-24287 (2005).

[63] A. MacKerell, J. D. Bashford, M. Bellott, R. Dunbrack, J. J. Evanseck, M. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L.

Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T.

Nguyen, B. Prodhom, W. E. Reiher, B. Roux, M. Schlenkrich, J. C. S.

Smith, R., J. Straub, M. Watanabe, J. Wiorkiew-Kuczera, D. Yin and M.

Karplus, "All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins " J. Phys. Chem. B. 102, 3586 (1998).

[64] O. J. Teleman, B. and S. Engstrom, "A molecular dynamics simulation of a water model with intramolecular degrees of freedom," Mol. Phys. 60, 193 (1987).

[65] A. R. Leach, "Molecular Modelling: principles and applications,"

Longman (1996).

[66] J. M. Haile., "Molecular Dynamics Simulation," Wiley-Interscience:

New York (1992).

[67] D. C. Rapaport, "The Art of Molecular Dynamics Simulation,"

Cambridge University Press: London (1997).

[68] J. M. Goodfellow, "Molecular Dynamics," CRC Press: Boston (1990).

[70] D. Frenkel and B. Smit, "Understanding Molecular Simulation,"

Academic Press: San Diego (1996).

[71] D. W. Heermann, "Computer Simulation Method," Springer-Verlag:

Berlin (1990).

[72] S. Nosé, "A unified formulation of the constant temperature molecular dynamics methods," J. Chem. Phys. 81, 511 (1984).

[73] W. Hoover, "Canonical dynamics: Equilibrium phase-space distributions," Phys. Rev. A: At. Mol. Opt. Phys. 31, 1695 (1985).

[74] P. A. T. Olsson, S. Melin and C. Persson, "Atomistic simulations of tensile and bending properties of single-crystal bcc iron nanobeams,"

Phys. Rev. B. 76, 224112 (2007).

[75] E. Bitzek, P. Koskinen, F. Gähler, M. Moseler and P. Gumbsch,

"Structural Relaxation Made Simple," Phys. Rev. Lett. 97 (17), 170201 (2006).

[76] H. P and K. W "Inhomogeneous Electron Gas," Phys. Rev. B. 136, 964 (164).

[77] K. W and J. L, Sham., "Self-Consistent Equations Including Exchange and Correlation Effects," Phys. Rev. A. 140, 1133 (1965).

[78] M. D, Ceperly. and J. B, Alder., "Ground State of the Electron Gas by a Stochastic Method," Phys. Rev. Lett. 45, 566 (1980).

[79] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J.

R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. Kudin, J. C. N.;

Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada,

相關文件