• 沒有找到結果。

第五章 結論與未來研究方向

5.2 未來展望

在中長程光纖通訊元件光源材料選擇上大多採用InGaAsP ,但 此材料對熱敏感度非常大,使得在操作上時必須有散熱裝置來為維持 其穩定性而造成增加封裝製程成本。近幾年來InGaAsN與AlGaInAs 兩種材料系統被發現具有更多的優勢後,吸引更多學術研究單位投注 在這兩大材料上的研發;尤其InGaAsN 以具有相當大的band offset ratio(△E : △Ec v = 7:3 到 6:4)取勝,因此在摻入銻後也能成功的將 波長拉至 1300 nm以上,並且對熱的敏感度低和電子溢流的情況有很 大的改善,其電子與重電洞有效質量特性也很適合發展成光圓點、體 積小的面射型雷射(VCSEL)之優勢,再加上其基板為價格便宜的GaAs 更能夠降低成本,因此發展前景相當看好。InGaAsNSb 是近年來發 展的新材料,有許多特殊的物理特性長晶技術也還不夠純熟,未來需 要產學界努力使其早日走向量產商品化的階段。

參 考 文 獻

1. 陳宜屏, 交通大學電子物理研究所, “氮含量與砷化銦厚度對砷化 銦/砷化鎵量子點光性影響”, 2001.

2. C. K. Kim and Y. H. Lee, “Thermal characteristics of optical gain for GaInNAs quantum wells at 1.3 μm,” Appl. Phys. Lett., vol. 79, pp.

3038−3040, 2001.

3. M. O. Fischer, M. Reinhardt, and A. Forchel, “Room-temperature operation of GaInAsN−GaAs laser diodes in the 1.5-μm range,” IEEE J. Sel. Top. Quantum Electron., vol. 7, pp. 149−151, 2001.

4. Y. Arakawa and K. Sakaki,”Evanescent-light guiding of atoms through hollow optical fiber for optically controlled controlled atomic deposition,” Appl. Phys. Lett, vol.40, pp. 939-941, 1982.

5. D. L. Huffaker and D.G. Deppe, “Electroluminescence efficiency of 1.3μm wavelength InGaAs/GaAs quantum dots,” Appl. Phys. Lett, vol.

73, pp. 520-522, 1998.

6. H. Drexler, D. Leonard, W. Hansen, J. p. Kotthaus, and P. M. Petroff,”

Spectroscopy of Quantum Levels in Charge-Tunable InGaAs Quantum Dots,” Phys. Rev. Lett. 73, pp. 2252-2255, 1994.

7. G. Lin and C. P. Lee, “Comparison of 1300 nm quantum well lasers

using different material systems,” Opt. Quantum Electron., vol. 34, pp.

1191−1200, 2002.

8. M. Kondow, K. Uomi, A. Niwa, T. Kitatani, S. Watahiki, and Y. Yazawa,

“A novel material of GaInNAs for long-wavelength-range laser diodes with excellent high-temperature performance,” in Proc. 1995 Solid State Device and Mater., Osaka Japan, 1995, pp. 1016-1018.

9. V. A. Odnoblyudov,A. Yu. Egorv, N. V. Kryzhanovskaya, A. G.

Gladyshev,V. V. Mamutin, A.F. Tsatsul,and V. M. Ustinov,”

Room-temperature photoluminescence at 1.55μm from heterostructures with InAs/InGaAsN Quantum Dots on GaAs substrates,” Technical Physics Letters, vol. 28, pp. 964-966, 2002.

10. Gh. Dumitras and H. Riechert, “Determination of band offsets in semiconductor quantum well structures using surface photo voltage,”

J. Appl. Phys., vol. 94, pp. 3955−3959, 2003.

11. 余合興, “光電子學-原理與應用(第四版)”, 中央圖書出版社, 1985.

12. 謝秉億,成功大學物理研究所,”不同溫度成長之 InGaAs 量子井其螢 光光譜研究”, 2005.

13. Keith Barnham, and Dimitri Vvedensky,”Low-Dimensional semiconductor structures:fundamentals and device applications”,

Cambridge University Press, U.K.,p.3-8,p.61-73,2001

14. 柯忠廷, 交通大學電子物理研究所, “MOCVD 成長 GaN/GaAs 量子 井的深層缺陷能階與能帶研究”, 2007.

15. 陳裕大, 交通大學電子物理研究所, “熱退火處理之砷化銦/砷化鎵 量子點光性研究”, 2001.

16. M. Asasa, Y. Miyamoto, and Y. Suematsu, “Gain and the threshold of three-dimensional quantum-box lasers,” IEEE J. Quantum Electron.

22, 1915 (1986).

17. J. Wu, W. Shan, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E.

Haller, H. P. Xin, and C. W. Tu, Phys. Rev. B, 64, 085320, 2001.

18. I. Vurgaftman and J. R. Meyer, J. Appl. Phys. 94, 3675, 2003.

19. H. Kalt and M. Hetterich (Eds.): Optics of Semiconductors and Their Nanostructures (springer Berlin Heidelberg New York 2004).

20. W. Shan, W. Walukeiwicz, and J. W. Ager III, “Band anticrossing in GaInNAs alloys,” Phys. Rev. Lett., vol. 82, pp. 1221−1224, 1999.

21. P. Perlin, P. Wiśniewski, C. Skierbiszewski, and T. Suski, “Interband optical absorption in free standing layer of Ga0.96In0.04As0.99N0.01,”Appl. Phys. Lett., vol. 76, pp. 1279−1281, 2000.

22. W. K. Cheah, W. J. Fan, S. F. Yoon, and W. K. Loke, R. Liu and A. T.

S. Wee, J. Appl. Phys. 99, 104908, 2006

23. .140.117.32.195/NOEMDP/奈米課PPT/MBE&E-beam&RIE.ppt.

24. J. Miguel-Sanchez, A. Guzman, J. M. Ulloa, A. Hierro, and E.

Munoz,”Effect of nitrogen on the optical properties of InGaAsN p-i-n structures grown n misoriented (111)B GaAs substrates,” Appl. Phys.

Lett., vol. 84, pp. 2524-2526, 2004.

25. J. Miguel-Sánchez, A. Guzmán, J. M. Ulloa, A. Hierro, and E.

Muñoz,“Effect of nitrogen on the optical properties of InGaAsN p-i-n structures grown on misoriented (111)B GaAs substrates,” Appl.

Phys.Lett., vol. 84, pp. 2524−2526, 2004.

26. X.Yang, M.J. Jurkovic, J.B. Heroux, and W.I. Wang, “Molecular beam epitaxial growth of InGaAs:Sb/GaAs quantum wells for long-wavelength semiconductor laser”, Appl. Phys. Lett, V0l. 75, 178, 1999.

27. J. C. Harmand, L. H. Li, G. Patriarche, and L. Travers, “GaInAs/GaAs quantum well growth assisted by Sb surfactant : Toward 1.3mm emission” Appl. Phys.Lett, V0l.84, 3981, 2004.

相關文件