• 沒有找到結果。

6. 結論與未來工作….…

6.1 未來工作

為朝向能模擬更複雜的真實環境,以及克服網路上的障礙,還有增進系統的 應用性,未來還有很多可以努力的空間,如以下所列:

1. 網路方面:為使力感能連續,可對網路延遲狀況以預測未來的力值方式進 行,當超過一定延遲時即進行預測,為了達成此種目的,要進行程式改寫,

使程式執行時再多一個執行緒同步運行,如此網路、力感與視覺三部份將可 分開,分別運行。而預測也不只對於力量的大小和方向,也應對於移動路徑 進行補償,總之使整個系統可以進行地像連續系統。

2. 高維度化:為使感覺更加真實,以及增加操作的維度,勢必要將模型復現至 更高維度,而此同時也需要使用更多自由度的操作工具使其空間操作成為可 能,此外復現時,因為隨著模型的精密度與維度提高,勢必會使系統效能降 低,故對於 3D 空間的力感模型與視覺呈現要如何進行,可以再作研究。

3. 實體連結:可以進行虛擬世界與真實世界的連結,例如將實驗中,虛擬臂的 位置連接指定為真實機械臂的末端位置,並推動真實的物體,然後同樣藉由 目前的力資訊架構,感受力回饋資訊,如此要連結外部的力感測裝置,作多 維度的方向與力量判別,而在此方面,整合力回饋裝置以外的實體裝置進入 系統後,對其参數的調校,以及採用何種智慧控制,要再依當時應用場合而 定。

參考文獻

[1] D. C. Ruspini, K. Koralov, and O. Khatib, “Haptic interaction in virtual environments,” IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 128 –133, 1997.

[2] F. Vahora, B. Temkin, T. M. Krummel, and P. J. Golman, “Development of real-time reality haptic application: real-time issues”, 12th IEEE Symposium on Computer-Based Medical Systems, pp. 290 – 295, 1999.

[3] J. G. Webster and D. G. Hanger, “Telepresence for touch and proprioception in teleoperator system,” IEEE Trans. On System, Man and Cybernetics, Vol. 18, No.

6, pp. 1020-1023, 1989.

[4] K. B. Shimoga, “A survey of perceptual feedback issue in dexterous telemanipulation: Part I. Finger force feedback”, IEEE Virtual Reality Annual International Symposium, pp. 263 – 270, 1993.

[5] L. D. Joly and C. Andriot, “Imposing motion constraints to a force reflecting telerobot through real-time simulation of a virtual mechanism”, IEEE International Conference on Robotics and Automation, pp. 357-362, 1995.

[6] L. Dongjun, O. Martinez-Palafox, and M. W. Spong, “Bilateral Teleoperation of Multiple Cooperative Robots over Delayed Communication Networks: Theory”, IEEE International Conference on Robotics and Automation, pp. 360-365, 2005.

[7] M. A. Srinivasan and C. Basdogan, “Haptics in virtual environments: taxonomy, research status, and challenges”, Computers and Graphics, Vol. 21, No. 4, pp.

393-404, 1997.

[8] M. Ouh-young, J.-R. Wu, W.-N. Tsai, T.-J. Yang, and C.-H. Huang, “A force feedback joystick and its use in PC video games,” IEEE International Conference on Consumer Electronics, pp. 326-327, 1995.

[9] M. Ouh-young, W. N. Tsai, M. C. Tsai, J.R. Wu, C. H. Huang, and T. J. Yang, “A low-cost force feedback joystick and its use in PC video games”, IEEE Transactions on Consumer Electronics, Vol 41, Issue 3, pp. 787 -794, 1995.

[10] M. S. Yoh, “The Reality of Virtual Reality”, Seventh International Conference on Virtual Systems and Multimedia, pp. 666-674, 2001.

[11] N. Hogan, “Controlling impedance at the man/machine interface”, IEEE International Conference on Robotics and Automation, Vol.3, pp. 1626-1631, 1989.

[12] N. Hogan, “Stable Execution of Contact Tasks Using Impedance Control”, IEEE

International Conference on Robotics and Automation, pp. 1047-1054, 1987.

[13] O. M. Al-Jarrah and Y. F. Zheng, “Arm-manipulator coordination for load sharing using variable compliance control”, IEEE International Conference on Robotics and Automation, pp. 895-900, 1997.

[14] R. C. Goertz and R. Thompson, “Electronically controlled manipulator”, Nucleonics, pp. 46-47, Nov. 1954.

[15] S. G. Hong, J. J. Lee, and S. Kim, “Generating artificial force for feedback control of teleoperated mobile robots”, IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1721–1726, 1999.

[16] T. L. Brooks, “Telerobotics response requirements”, IEEE International Conference on Systems, Man and Cybernetics, pp. 113 – 120, 1990.

[17] T. Tsumugiwa, R. Yokogawa, and K. Hara, “Variable impedance control with virtual stiffness for human-robot cooperative peg-in-hole task”, IEEE International Conference on Intelligent Robots and Systems, pp. 1075-1081, 2002.

[18] Y. Adachi, T. Kumano, and K. Ogino, “Intermediate representation for stiff virtual objects”, IEEE Virtual Reality Annual International Symposium, pp.

203 – 211, 1995.

[19] Virtual hands reach across ocean ,

http://news.bbc.co.uk/1/hi/technology/2371103.stm [20] Open GL超級手冊, 大新資訊譯, 碁峰, 台北市, 2000.

相關文件