• 沒有找到結果。

五、 結論

5.2 未來工作

在TSMC 0.35μm 標準CMOS 製程中,可成功製做出所設計元件,其 元件尺寸均與設計相符,但製程所產生之殘餘應力,對於元件作動的性能 有不小的影響,在無法更改製程內容的情況,如何將殘餘應力產生的結構 變形降低,使作動結果更符合設計之預期,將是未來要解決的目標。

另外由於製程最後用於掏空基材之溶液,對結構邊緣均有侵蝕現象,

造成部分結構較易斷裂,在未來的下線設計時,應考量此問題並在晶片規 畫時避開,以避免同樣情況再次產生。

為了確實量測壓阻材料所感測的訊號,未來將與 IC 電路作結合,並將 結構加以持續改良,使量測訊號更為明顯,以利於將來元件產品化。

參考文獻

1. J. Buhler, J. Funk, J.G. Korvink, F.-P. Steiner, P.M. Sarro, and H.

Baltes,“ Electrostatic aluminum micromirrors using double-pass

metallization,” Journal of Microelectromechanical Systems. 6, pp 126-135, 1997.

2. T. Yasuda, I. Shimoyama, and H. Miura,“ CMOS drivable electrostatic microactuator with large deflection.” The 10th IEEE International

Conference on Micro Electro Mechanical Systems. pp 26-30, 1997.

3. M. Parameswaran, L. Ristic, K. Chau, A.M. Robinson, and W. Allegretto,

“ CMOS electrothermal microactuators.” Micro Electro Mechanical Systems, 'Proceedings, An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots'. , IEEE. pp 128 -131, 1990.

4. M. Huja, and M. Husak,“ Thermal microactuators for optical purpose,”

Proceedings of International Conference on Information Technology:

Coding and Computing. pp 137 -142, 2001.

5. http://www.analog.com/

6. http://www.dlp.com/

7. J. Buhler, J.G. Korvink, F.P. Steiner, P.M. Sarro, and H.

baltes, ”Electrostatics aluminum micromirrors using bouble-pass

metallization”, Journal of Microelectromechanical Systems. 6, pp126-135, 1997.

8. K.H.-L. Chau, S.R. Lewis, Y.Zhao, R.T. Howe, S.F. Bart, and R.G.

Marcheselli,“ An integrated force-balanced capacitive accelerometeror low-G applications,” Tech. Digest, 9th Int. Conf. Solid-State

9. D.J. Young, and B.E. Boser,“ A micromachine-based RF low-noisevoltage-controlled oscillator,” Custom integrated circuitsconference, proceeding of the IEEE. pp 5-8, 1997.

10. Ioana Voiculescu, Mona E. Zaghloul , R. Andrew McGill, Eric J. Houser, and Gary K. Fedder, “Electrostatically Actuated Resonant Microcantilever Beam in CMOS Technology for the Detection of Chemical Weapons”, IEEE SENSORS JOURNAL, VOL. 5, NO. 4, AUGUST 2005

11. L. Gisela, K. S. J. Pister, and K. P. Roos, “ Standard CMOS piezoresistive sensor to quantify heart cell contractile forces,” Micro Electro Mechanical Systems, 'Proceedings, An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems'. , IEEE. pp 150 -155, 1996.

12. V. Beroulle, Y. Bertrand, L. Latorre, and P. Nouet,“ Micromachined CMOS magnetic field sensors with low-noise signal conditioning,” The 15th IEEE International Conference on Micro Electro

13. Don Klaitabtim and Adisorn Tuantranont, Design Consideration and Finite Element Modeling of MEMS Cantilever for Nano-Biosensor Applications, Proceedings of 2005 5th IEEE Conference on Nanotechnology, Nagoya, Japan, July 2005

14. H. Lakdawala, and G.K. Fedder,“ CMOS micromachined infraredimager pixel,” Tech. Digest, 11th Int. Conf. Solid-State Sensors and Actuators, Munich Germany, June, 2001. pp 556-559.

15. G. Zhang, H. Xie, L. E. de Rosset, and G. K. Fedder,“ A lateral capacitive CMOS accelerometer with structural curl compensation,” The Twelfth

IEEE International Conference on Micro Electro Mechanical Systems, 1999, pp. 606 –611.

16. Mohammad M. Mandurah, Krishna C. Saraswat, Theodore I. Kamins, A Model for Conduction in PolycrystallineSilicon-Part I: Theory, IEEE Trans.

Electron Device, ED-28, NO. 10 (1981) 1163-71.

17. Semiconductor physics and device, Donald A. Neamen 18. Semiconductor physics, 劉恩科

19. Tsu-Jae King, James P. McVittie, Krishna C. Saraswat, Fellow, and James R. Pfiester, Senior Member, Electrical Properties of Heavily Doped

Polycrystalline Silicon-Germanium Films IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 41, NO. 2, FEBRUARY 1994

20. Lucia Romano,* Alberto Maria Piro, and Maria Grazia Grimaldi, Effect of Strain on the Carrier Mobility in Heavily Doped p-Type Si PHYSICAL REVIEW LETTERS 29 SEP (2006)

21. Nicky Chau Chun Lu, Levy Gerzberg, Chih Yuan Lu, James D Meindl, Modelling and optimisation of monolithic polycrystalline silicon resistors, IEEE Trans. Electron Device, ED-28, NO. 10 (1981) 818-29

22. Dae M. Kim, A. N. Khondker, S. Sahmed, and Rajiv R. Shah, Theory of Conduction in Polysilicon: Drift-Diffusion Approach in

Crystalline-Amorphous-Crystalline Semiconductor System---Part I: Small Signal Theory, IEEE Transaction on Electron Device, Vol. ED-31, NO. 4, April 1984

23. R. W. Keyes, “The effect of elastic deformation on the electrical

conductivity of semiconductors,” in Solid State Physics, vol. 11, F. Seitz

24. Conyers Herring, Erich Vogt, Transport and Deformation-Potential Theory for Many-Valley Semiconductors with Anisotropic Scattering, physical Review, Vol 101, num 3, Feb 1,1956

25. M. Dean and R. D. Douglas, Eds., Semiconductor Strain Gauges, New York:

Academic Press, 1962.

26. Tyler Lane Waterfall, Design of Piezoresistive MEMS Force and Displacement Sensors.

27. Y. Kanda, A graphical representation of the piezoresistance coefficients in silicon, IEEE Trans. Electron Device, ED-29 (1982) 64-70.

28. P. J. French, A. G. R. Evans, Piezoresistance in polysilicon, Electronics Letters, Vol20, NO.24, 1984

29. Brand, Oliver, CMOS-MEMS, 2005

30. Lange, D. (Dirk), CMOS cantilever sensor systems : atomic force microscopy and gas sensing applications, 2002

31. Heat Tranfer Analysis, Xiang Li 32. Holman, J. P., Heat Tranfer

33. Li-Sheng Zheng, Michael S.-C. Lu, A large-displacement CMOS micromachined thermal actuator with comb electrodes for capacitive sensing, Sensors and Actuators A 136 (2007) 697–703

相關文件