• 沒有找到結果。

第三章 結果與討論

3.2 氧化鈦奈米棒 Tnr

3.2.5 染料敏化太陽能電池測試結果

圖3-32 以 Tnr 及 Tnr 在不同溫度下經過氧化氫處理後所製得樣品作為染 料敏化太陽能電池光陽極之電壓電流圖。

表3-6 Tnr 在不同溫度下經過氧化氫處理後所製得樣品及 Tnr 的物理化學性質 及其作為染料敏化太陽能電池光陽極光伏特表現。

Phase S.A.

(m2/g)

N719ads

(µmol/cm2)

Roughness (-)

VOC

(mV)

JSC

(mA/cm2) FF (-)

η (%) Tnr-2H2O2-150 A 65 0.046 443 845 12.6 0.66 7.03 Tnr-2H2O2-130 A + T 97 0.054 520 815 7.0 0.67 3.84 Tnr-2H2O2-100 A + T 76 0.028 269 785 2.6 0.68 1.38

Tnr T 50 0.003 29 710 1.5 0.54 0.59 P25 A + R ~50 0.033 318 790 11.4 0.66 5.95

0 100 200 300 400 500 600 700 800 900 1000 0

2 4 6 8 10 12 14 16 18 20

Tnr

Tnr-2H2O2-150

Tnr-2H2O2-130

Tnr-2H2O2-100

Photocurrent density (mA/cm2 )

Voltage (mV)

圖3-33 以 Tnr 及 Tnr 在不同溫度下經硝酸處理後所製得樣品作為染料敏化太陽能 電池光陽極之電壓電流圖。

表3-7 Tnr 在不同溫度下經硝酸處理後所製得樣品及 Tnr 的物理化學性質及其作為 染料敏化太陽能電池光陽極光伏特表現。

Phase S.A.

(m2/g)

N719ads

(µmol/cm2)

Roughness (-)

VOC

(mV)

JSC

(mA/cm2) FF (-)

η (%) Tnr-0.1HNO3-150 A 98 0.072 693 760 9.9 0.66 5.00 Tnr-0.1HNO3-130 A + T 83 0.063 606 825 4.1 0.63 2.11 Tnr-0.1HNO3-100 A + T 65 0.057 549 825 3.0 0.64 1.60

Tnr T 50 0.003 29 710 1.5 0.54 0.59 0 100 200 300 400 500 600 700 800 900 1000

0 2 4 6 8 10 12 14

Tnr

Tnr-0.1HNO3-150

Tnr-0.1HNO3-130 Tnr-0.1HNO3-100

Photocurrent density (mA/cm2 )

Voltage (mV)

圖3-34 以 Tnr 及 Tnr 經高溫煅燒後所製得樣品作為染料敏化太陽能電池光陽極之 電壓電流圖。

表3-8 Tnr 經高溫煅燒後所製得樣品及 Tnr 的物理化學性質及其作為染料敏化太陽 能電池光陽極光伏特表現。

Phase S.A.

(m2/g)

N719ads (µmol/cm2)

Roughness (-)

VOC (mV)

JSC (mA/cm2)

FF (-)

η (%) Tnr-c700 A 16 0.002 19 780 3.4 0.66 1.75 Tnr-c600 A 20 0.002 19 805 2.8 0.69 1.57 Tnr-c500 TiO2(B) 37 0.002 19 790 1.3 0.68 0.74

Tnr T 50 0.003 29 710 1.5 0.54 0.59 P25 A + R ~50 0.033 318 790 11.4 0.66 5.95

0 100 200 300 400 500 600 700 800 900 1000 0.0

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Tnr-c700 Tnr-c600

Tnr-c500 Tnr

Photocurrent density (mA/cm2 )

Voltage (mV)

圖 3-35 以 Tnr-2H2O2-150、Tnr-0.1HNO3-150、Tnr-c700 及 Tnr 製得樣品作為染料 敏化太陽能電池光陽極之電壓電流圖。

表3-9 Tnr-2H2O2-150、Tnr-0.1HNO3-150、Tnr-c700 及 Tnr 的物理化學性質及其作 為染料敏化太陽能電池光陽極光伏特表現。

Phase S.A.

(m2/g)

N719ads (µmol/cm2)

Roughness (-)

VOC (mV)

JSC (mA/cm2)

FF (-)

η (%) Tnr-2H2O2-150 A 65 0.046 443 845 12.6 0.66 7.03 Tnr-0.01HNO3-150 A 98 0.072 693 760 9.9 0.66 5.00 Tnr-c700 A 16 0.002 19 780 3.4 0.66 1.75 Tnr T 50 0.003 29 710 1.5 0.54 0.59 P25 A + R ~50 0.033 318 790 11.4 0.66 5.95

0 100 200 300 400 500 600 700 800 900 1000 0

2 4 6 8 10 12 14 16 18 20

Tnr-2H

2O

2-150 Tnr-0.1HNO3-150

Tnr-c700

2 Photocurrent density (mA/cm) Tnr

Voltage (V)

0 100 200 300 400 500 600 700 800 900 1000 0

2 4 6 8 10 12 14 16 18 20

Photocurrent density (mA/cm2 )

Voltage (mV)

9 µm 12 µm 15 µm 19 µm 20 µm

圖3-36 Tnr-2H2O2-150 不同膜厚轉換效率測試電壓電流圗。

表3-10 Tnr-2H2O2-150 樣品不同膜厚作為染料敏化太陽能電池光陽極光 伏特表現。

Film thickness (µm)

N719ads

(µmol/cm2)

Roughness (-)

VOC

(mV)

JSC

(mA/cm2)

FF (-)

η (%) 9 0.021 202 825 9.9 0.69 5.67

12 0.046 443 845 12.6 0.66 7.03 15 0.067 645 805 16.4 0.63 8.31 19 0.078 751 760 15.2 0.60 6.93 20 0.089 857 740 14.5 0.64 6.87

由前面章節研究顯示,二氧化鈦膜厚對染料敏化太陽能電池光伏特表 現的影響甚鉅。在此我們將綜合先前光伏特表現最好的 Tnt-2H2O2-150、

Tnt-0.05HNO3-80、Tnr-2H2O2-150 與水熱溶凝膠法製得的 SG-TiO2以及P25 TiO2作比較,探討對光電轉換效率的影響。

為了方便討論,我們將各樣品的粗糙度(roughness)對其膜厚作圖如圖 3-37 整理於表 3-11,發現各樣品間,當膜厚固定時,以 SG-TiO2的粗糙度 最 高 、Tnt-0.05HNO3 其 次 、 接 下 來 的 順 序 分 別 為 Tnt-2H2O2-150 、 Tnt-2H2O2-150 及 P25 TiO2,與各樣品的表面積大小順序相若。當膜厚增加 時,以Tnt-2H2O2-150 的粗糙度增加幅度最大。

我們將各樣品的光電轉換效率對其膜厚作圖如圖3-38。結果顯示各樣 品的光電轉換效率隨膜厚先逐漸增加後,再逐漸下降,顯示各樣品對電池 的光電轉換效率有其最適化的膜厚,大抵皆位於12 至 15 µm 間。對照其 光電流密度結果(圖 3-39),可發現兩者間的趨勢是一致的,顯示膜厚的改 變主要是影響光電流密度的部分,而導致光電轉換效率不同。而開環電壓 及充填因子則未看出有明顯的趨勢。

圖3-37 各樣品粗糙度對膜厚的關係圖。

表3-11 各樣品粗糙度對膜厚的關係表。

Roughness = A.(film thickness ) + B Photoanode component Surface area

(m2/g) A B r2

Tnt-0.05HNO3-80 186 65.0 133.1 0.9843 Tnt-2H2O2-150 108 79.7 -303.2 0.9616 Tnr-2H2O2-150 65 55.2 -248.5 0.9637 SG-TiO2 108 66.8 328.7 0.9853 P25-TiO2 ~ 50 31.6 -35.4 0.8286

0 5 10 15 20

0 200 400 600 800 1000 1200 1400 1600 1800

Roughness (-)

Tnt-0.05HNO3-80 Tnt-2H2O2-150 Tnr-2H2O2-150 SG-TiO2 P25-TiO2

Film thickness (µm)

圖3-38 各樣品光電轉換效率對膜厚的關係圖。

圖3-39 各樣品短路電流密度對膜厚的關係圖。

0 5 10 15 20

0 2 4 6 8

10 Tnt-0.05HNO3-80 Tnt-2H2O2-150 Tnr-2H2O2-150 SG-TiO

2

P25

Conversion efficiency, η (%)

Film thickness (µm)

0 5 10 15 20

0 2 4 6 8 10 12 14 16 18 20

Tnt-0.05HNO3-80 Tnt-2H2O2-150 Tnr-2H2O2-150 SG-TiO2 P25

Photocurrent density (mA/cm2 )

Film thickness (µm)

第四章 結論

本研究將商用二氧化鈦粉體(Degussa P25)置於強鹼溶液中以水熱法製 得氧化鈦奈米管(Tnt)及奈米棒(Tnr),並探討它們在染料敏化太陽能電池光 陽極上的應用。根據高解析度穿透式電子顯微鏡(HRTEM)及場發射掃描式 電子顯微鏡(FESEM)的觀察,我們已經成功地製備出具有奈米管及奈米棒 的氧化鈦材料。Tnt 及 Tnr 的長度可達數百奈米。Tnt 外徑約 10 奈米、內 徑約5 奈米。Tnr 直徑約 20 至 150 奈米。氮氣等溫吸附實驗顯示 Tnt 表面 積可高達355 m2/g,有利於染料的吸附。Tnr 的表面積為 50 m2/g,與 P25 二氧化鈦相若。X 射線繞射(XRD)圖譜顯示 Tnt 及 Tnr 皆屬於鈦酸鹽結構,

與具銳鈦礦(anatase)及金紅石型(rutile)混相的 P25 二氧化鈦明顯不同。

我們以刮刀成膜(doctor-blade)法分別將 Tnt 及 Tnr 塗佈在導電玻璃上 後、經 N719 染料敏化後製得光陽極,以 LiI、I24-tert-butylpyridine 作 為電解質,以鍍有鉑膜的導電玻璃作為陰極,在 AM 1.5 模擬太陽光(100

mW/cm2)照射下進行太陽能電池測試。結果顯示雖然 Tnt 太陽能電池的光

電轉換效率3.74% 高於 Tnr 太陽能電池的 0.59%,但卻低於 P25 太陽能電 池的 5.95%。由於 Tnt 表面積遠高於 Tnr 及 P25,故我們推測上述結果可 能是因為Tnt 及 Tnr 的鈦酸鹽結構所致。

我們嘗試以過氧化氫水溶液處理、硝酸水溶液處理以及高溫煅燒等方 法進行相轉換,結果顯示上述方法皆能成功地將Tnt 及 Tnr 結構由鈦酸鹽 相轉換成銳鈦礦晶型。我們系統性地探討酸濃度及處理溫度對相轉換的影 響,結果顯示相較於過氫化氫,硝酸較強的酸性有利於相轉換的進行(即相 轉換可在較低的酸濃度及處理溫度下進行)。實驗結果顯示 Tnr 在過氧化氫 水溶液或硝酸水溶液處理中所需的相轉換溫度高於Tnt。Tnt 相轉換後表面 積下降,Tnr 則有上升的趨勢。

染料敏化太陽能電池測試結果顯示,各太陽能電池間以經過氧化氫水 溶液處理製得的太陽能電池其光伏特表現最佳,硝酸水溶液處理者次之。

Tnt 經過氧化氫處理後製得的太陽能電池光電轉換效率為 8.25%,而 Tnr 經過氧化氫處理後製得的太陽能電池光電轉換效率為8.31%。

參考文獻

1. M. Grätzel, “Photoelectrochemical cells”, Nature. 414 (2001) 338-344.

2. 黃建昇, 結晶矽太陽電池發展近況, 工業材料雜誌 2003, 203 期, 150.

3. 郭明村, 薄膜太陽電池發展近況, 工業材料雜誌 2003, 203 期, 138.

4. F. Hurd and R. Livingston, “The quantum yields of some dye-sensitized photooxidations” J. Phys. Chem. 44 (1940) 865-873.

5. G. Oster, J. S. Bellin, R. W. Kimball and M. E. Schrader, “Dye-sensitized photooxidation” J. Am. Chem. Soc. 81 (1959) 5095-5099.

6. S. Chaberek, A. Shepp and R. J. Allen, “Dye-sensitized photopolymerization processes. I.” J. Phys. Chem. 69 (1965) 641-647.

7. S. Chaberek, A. Shepp and R. J. Allen, “Dye-sensitized photopolymerization processes. II.” J. Phys. Chem. 69 (1965) 647-656.

8. S. Chaberek, A. Shepp and R. J. Allen, “Dye-sensitized photopolymerization processes. III.” J. Phys. Chem. 69 (1965) 2834-2841.

9. S. Chaberek, A. Shepp and R. J. Allen, “Dye-sensitized photopolymerization processes. IV.” J. Phys. Chem. 69 (1965) 2842-2848.

10. Kearns et al., “Evidence for the participation of 1.SIGMA.g+ and 1.DELTA.g oxygen in dye-sensitized photooxygenation reactions. I” J. Am. Chem. Soc. 89 (1967) 5455-5456.

11. Kearns et al., “Evidence for the participation of 1.SIGMA.g+ and 1.DELTA.g oxygen in dye-sensitized photooxygenation reactions. II” J. Am. Chem. Soc. 89 (1967) 5456-5457.

12. H. Tsubomura, M. Matsumura, Y. Nomura and T. Amamiya, “Dye sensitized zinc oxide/aqueous electrolyte/platinum photocell” Nature. 261 (1976) 402

13. B. O’Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films” Nature. 353 (1991) 737-740.

14. M. Grätzel, “Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells”

Inorg. Chem. 44 (2005) 6841-6851

15. Z.-S. Wang, M. Yanagida, K. Sayama and H. Sugihara, “Electronic-Insulating Coating of CaCO3 on TiO2 Electrode in Dye-Sensitized Solar Cells:

Improvement of Electron Lifetime and Efficiency” Chem. Mater. 18 (2006) 2912-2916

16. M. Grätzel, “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells” J. Photochem. Photobio. A 164 (2004) 3-14.

17. A. Hagfeldt and M. Grätzel, “Light-induced redox reactions in nanocrystalline systems” Chem. Rev. 95 (1995) 49-68.

18. K. Kalyanasundaram and M. Grätzel, “Applications of functionalized transition metal complexes in photonic and optoelectronic devices” Coord. Chem. Rev.

177 (1998) 347-414.

19. M. Grätzel﹐“Mesoporous oxide junctions and nanostructured solar cells”

Current Opin. Colloid Interf. Sci. 4 (1999) 314-321.

20. D. Cahen, G. Hodes, M. Gra1tzel, J. Francüois and I. Riess “Nature of photovoltaic action in dye-sensitized solar cells” J. Phys. Chem. B 104 (2000) 2053-2059

21. X.-T. Zhang, H.-W. Liu, T. Taguchi, Q.-B. Meng, O. Sato and A. Fujishima,

“Slow interfacial charge recombination in solid-state dye-sensitized solar cell using Al2O3-coated nanoporous TiO2 films” Sol. Energy Mater. Sol. Cells. 81 (2004) 197–203.

22. M. Grätzel﹐“Perspectives for dye-sensitized nanocrystalline solar cells” Prog.

23. Y. Ohsaki, N. Masaki, T. Kitamura, Y. Wada, T. Okamoto, T. Sekino, K.

Niihara and S. Yanagida “Dye-sensitized TiO2 nanotube solar cells: fabrication and electronic characterization” Phys. Chem. Chem. Phys. 7 (2005) 4157-4163.

24. Y. Suzuki, S. Ngamsinlapasathian, R. Yoshida and S. Yoshikawa “Partially nanowire-structured TiO2 electrode for dye-sensitized solar cells” Cent. Eur. J.

Chem. 4 (2006) 476–488.

25. S. Uchida, R. Chiba, M. Tomiha, N. Masaki and M. Shirai “Application of titania nanotubes to a dye-sensitized solar cell”, Electrochem. 70 (2002) 418-420.

26. M .Adachi, Y. Murata, J. Takao, J. Jiu, M. Sakamoto and F. Wang “Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the oriented attachment mechanism” J. Am. Chem. Soc. 126 (2004) 14943-14949.

27. M.-Y. Song, D.-K. Kim, K.-J. Ihn, S.-M. Jo and D.-Y. Kim “Electrospun TiO2

electrodes for dye-sensitized solar cells” Nanotechnology. 15 (2004) 1861–1865.

28. M. Wei, Y. Konishi, H. Zhou, H.Sugihara, and H. Arakawa “Utilization of titanate nanotubes as an electrode material in dye-sensitized solar cells” J.

Electrochem. Soc. 153 (2006) A1232-A1236.

29. G.-S. Kim, H.-K. Seo, V.P. Godble, Y.-S. Kim, O.-B. Yang and H.-S. Shin

“Electrophoretic deposition of titania nanotubes from commercial titania nanoparticles:Application to dye-sensitized solar cells” Electrochem. Commun.

8 (2006) 961-966.

30. J. Jiu, S. Isoda, F. Wang, and M. Adachi “Dye-sensitized solar cells based on a single-crystalline TiO2 nanorod film” J. Phys. Chem. B 110 (2006) 2087-2092.

31. S. Iijima. “Helical microtubules of graphitic carbon.” Nature. 354 (1991) 56.

32. R. Tenne, L. Margulis, M. Genut and G. Hodes. “Polyhedral and cylin- drical structures of tungsten disulphide.” Nature. 360 (1992) 444.

33. M. Remskar. “Inorganic nanotubes.” Adv. Mater. 16 (2004) 1497-1504.

34. M. Adachi, Y. Murata and M. Harada M and S. Yoshikawa. “Formation of titania nanotubes with high photo-catalytic activity.” Chem. Lett. (2000) 942-943.

35. M. Adachi, Y. Murata, I. Okada and S. Yoshikawa. “Formation of titania nanotubes and applications for dye-sensitized solar cells.” J. Electrochem. Soc.

150 (2003) G488-G493.

36. P. Hoyer. “Formation of a titanium dioxide nanotube array.” Langmuir. 12 (1996) 1411-1413.

37. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino and K. Niihara. “Formation of titanium oxide nanatube.” Langmuir. 14 (1998) 3160-3163.

38. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino and K. Niihara. “Titania nanotubes prepared by chemical processing.” Adv. Mater. 11 (1999) 1307-1311.

39. R. Ma, K. Fukuda, T. Sasaki, M. Osada and Y. Bando. “Structural features of titanate nanotubes/nanobelts revealed by Raman, X-ray absorption fine structure and electron diffraction characterizations.” J. Phys. Chem. B 109 (2005) 6210-6214.

40. A. Nakahira, W. Kato, M. Tamai, T. Isshiki and K. Nishio. “Synthesis of nanotube from a layered H2Ti4O9 · H2O in a hydrothermal treatment using various titania sources.” J. Mater. Sci. 39 (2004) 4239-4245.

41. Q. Chen, G.H. Du, S. Zhang, and L.-M. Peng, “The structure of trititanate nanotubes”, Acta Cryst. B58 (2002) 587-593.

42. Q. Chen, W.-Z. Zhou, G.-H. Du and L.-M. Peng. “Trititanate nanotubes made

43. X.-M Sun and Y.-D. Li. “Synthesis and characterization of ion-exchangeable titanate nanotubes.” Chem. Eur. J. 9 (2003) 2229-2238.

44. C.-C. Tsai and H.-S. Teng. “Regulation of the physical characteristics of titania nanotube aggregates synthesized from hydrothermal treatment.” Chem. Mater.

16 (2004) 4352-4358.

45. C.-C. Tsai and H. Teng “Structural Features of Nanotubes Synthesized from NaOH Treatment on TiO2 with Different Post-Treatments” Chem. Mater. 18 (2006) 367-373.

46. Z.-Y. Yuan and B.-L. Su. “Titanium oxide nanotubes, nanofibers and nanowires.” Colloid and Surfaces A: Phiscochem. Eng. Aspects. 241 (2004) 173-183.

47. D.V. Bavykin, V.N. Parmon, A.A. Lapkin and F.C. Walsh. “The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes.” J.

Mater. Chem. 14 (2004) 3370-3377.

48. D.V. Bavykin, J.M. Friedrich, A.A. Lapkin, and F.C. Walsh “Stability of Aqueous Suspensions of Titanate Nanotubes” Chem. Mater. 18 (2006) 1124-1129.

49. M. Zhang, Z.-S. Jin, J.-W. Zhang, X.-Y. Guo, J.-J. Yang, W. Li, X.-D. Wang and Z.-J. Zhang. “Effect of annealing temperature on morphology, structure and photocatalytic behavior of nanotube H2Ti2O4(OH)2.” J. Mol. Catal. A 217 (2004) 203-210.

50. B.-D. Yao, Y.-F. Chan, X.-Y. Zhang, W.-F. Zhang, Z.-Y. Yang, and N. Wang.

“Formation mechanism of TiO2 nanotubes.” Appl. Phys. Lett. 82 (2003) 281-283.

相關文件