• 沒有找到結果。

實驗平台分別以兩套電腦、運動控制卡、變頻器、感應馬達架構之 PC_Based 實驗 系統做為驗證平台,其中一套充當主動式負載,另一套則針對本文提出之理論進行實驗 操作。過程中,首先在個人電腦中,由 Matlab Simulink 軟體,根據本計劃所提出之理 論架構撰寫程式,進行模擬,證明其可行性。接著再經由電腦介面,將程式下載至以 DSP 為中心所設計之運動控制卡,並藉由控制卡輸出之信號控制變頻器驅動感應馬達。

最後將三相電流與轉子實際轉速信號回送至電腦中,整體架構如圖 6 所示。其中程式中 所用之參數值採用附件所示之值。

PWM INV

IM

vas

vbs

vcs

ias

ibs

ics

R S T

PC_Based System

PWM INV

IM

vas

vbs

vcs

ias

ibs

ics

R S T

Load

圖 6. 實驗平台架構圖。

3.1 模擬

選擇ωr =60 r/min 之操作點,其iˆdse =0.3A,iˆqse =0.3A,φˆdse =0.319Wb,φˆqse =0Wb,

依實際參數分析, K 須滿足(26)~(28)式。最後結論,在穩定操作下 K 之範圍為

-0.6 < K < 1.438 (30) 圖 7(a)所示,當 K =1.0967 時滿足(48)式之條件,而且同樣在K =100,I K =0.1 條件下,p 系統能在穩定狀態中運轉情況。圖 7(b)所顯示,因為不滿足(30)式之條件,因此分別在 T=9 秒時系統開始發散。圖 8 顯示操作於回升煞車模式下(τ <0),調整觀察器增益 K , 系統操作情形,同時也證明本計劃提出之方法之正確性。

(a) K =1.0967,K =100,I K =0.1 (b) K =1.5,p K =100,I K =0.1 p 圖 7. 改變 Observer Gain K 系統操作情形。

(a) K =0,K =100,I K =0.1 (b) K =1.2,p K =100,I K =0.1 p 圖 8. 回升煞車模式系統操作情形(τ = -0.5 N-m)。

3.2 實作

本計劃所提出之理論僅需利用觀測器增益 K 值,使系統在 Regenerating-Mode 操作 時能夠穩定控制。圖 9~圖 10 所示,為操作於馬達模式、回升煞車模式下,調整 K 值轉 子速度估測與磁通估測之實際運轉情況。圖 9(a)所示,為馬達模式下,設定感應馬達

ω =60 r/min 低速運轉下, K =0、r K =600、I K =1.0 轉子速度之估測情形;而當操作於p

ω =100 r/min 之回升煞車模式中,系統產生發散不穩定之現象,如圖 9(b)所示。而圖 10(a)r

所示,為調整 K 值後有效地使系統穩定運轉。圖 10(b)所示,為定子電阻估測情形,並 在 t = 6 sec,加上 1Ω,模擬定子電阻因環境變動改變時,定子電阻估測器估測情形能有 效地追隨實際定子電阻之變化。

0 1 2 3 4 5 6 7 8 9 10 -200

0 200

speed (r/min)

0 1 2 3 4 5 6 7 8 9 10

0 0.2 0.4 fluxds

0 1 2 3 4 5 6 7 8 9 10

-1 0 1 fluxqs

0 1 2 3 4 5 6 7 8 9 10

-5 0 5 isds

0 1 2 3 4 5 6 7 8 9 10

-1 0 1 isqs

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

-20 0 20

speed (r/min)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

-505x 1016 fluxds

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

-1 0 1 fluxqs

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

-2 0 2

idss

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

-0.2 0 0.2

Iqss

(a) (b)

圖 9. (a)ω =60 r/min, K = 0,r K =600,I K = 1.0 轉子速度之估測情形、 p (b)ω =60 r/min, K = 0,r K =600,I K = 1.0 轉子速度之估測情形。 p

0 1 2 3 4 5 6 7 8 9 10

-100 0 100

speed (r/min)

0 1 2 3 4 5 6 7 8 9 10

0 0.2 0.4 fluxds

0 1 2 3 4 5 6 7 8 9 10

-1 0 1 fluxqs

0 1 2 3 4 5 6 7 8 9 10

-5 0 5 isds

0 1 2 3 4 5 6 7 8 9 10

-1 0 1 isqs

(a) (b) 圖 10. (a)調整 K =0.6 轉子速度估測、

(b)定子電阻估測(當 T= 6 sec 定子加上 1Ω)。

附錄 馬達規格表

Rs 4.7 Ω Ls 119.0902 mH Lm 113.0449 mH Rr 1.38195 Ω Lr 118.5406 mH

J 0.000676 kg-m2 B 0.000515 NT-m/rad/s

參考文獻

[1] L. Harnefors, “Globally Stable Speed-Adaptive Observers for Sensorless Induction Motor Drives,” IEEE Trans. Electro., Vol. 54, No. 2, pp. 1243-1245, 2007.

[2] L. Harnefors, R. Ottersten, “Regenerating-Mode Stabilization of the Statically Compensated Voltage Model,” IEEE Trans. Ind. Electro., Vol. 54, No. 2, pp. 818-824, 2007.

[3] J. Holtz, and J. Juliet, ”Sensorless acquisition of the rotor position angle of induction motors with arbitrary stator windings,” IEEE Trans. ind. Appl., Vol 41, No. 6, pp.

1675 – 1682, 2005.

[4] L. Umanand, and S.R. Bhat, “Online estimation of stator resistance of an induction motor for speed control applications,” IEE Proceedins- Electric Power Appl., Vol. 142, No. 2, pp. 97-103, 1995.

[5] S. Suwankawin, S. Sangwongwanich, “Design strategy of an adaptive full-order observer for speed-sensorless induction-motor Drives -tracking performance and stabilization,”

IEEE Trans. Ind. Electro., Vol. 53, No. 1, pp. 96-119, 2006.

[6] S. Suwankawin, S. Sangwongwanich, ” A speed-sensorless IM drive with decoupling control and stability analysis of speed estimation,” IEEE Trans. Ind., electro., Vol. 49, No.

2, pp. 444-455, 2002.

[7] M. Hinkkanen, “Analysis and design of full-order flux observers for sensorless induction motors,“IEEE Trans. Ind. Electro., vol. 51, No. 5, pp.1033-1040, 2004.

[8] M. Hinkkanen, and J. Luomi, “Stabilization of Regenerating- Mode Operation in Sensorless Induction Motor Drive by Full-Order Flux Observer Design,” IEEE Trans. Ind.

Electro., Vol. 51, No. 6,pp. 1318-1328, 2004.

[9] M Hinkkanen, and J. Luomi, “Parameter Sensitivity of Full -Order Flux Observers for Induction Motors,” IEEE Trans. Ind. Appl., Vol. 39, No. 4, pp. 1127-1040, 2003.

[10] Hisao Kubota, Ikuya Sato, Yuichi Tamura, Kouki Matsuse, Hisayoshi Ohta, and Yoichi Hori, 2002, “Regenerating-Motor Low-Speed Operatio of Sensorless Induction Motor Drive With Adaptive Observer,” IEEE Trans. Ind. Appl., vol. 38, no. 4, pp. 1081-1086.

[11] Hirokazu Tajima, Giuseppe Guidi, and Hidetoshi Umida, “Cosideration About Problems and Solution of Speed Estimation Method and Parameter Tuning for Speed-Sensorless Vector Control of Induction Motor Drive,” IEEE Trans. Ind. Appl. ,Vol. 38 No. 5, pp.

1282-1289, 2002.

[12] J. Holtz, and Q. Quan, “Sensorless vector control of induction motors at very low speed using a nonlinear inverter model and parameter identification,” IEEE Trans. Ind. Appl., Vol 38, No. 4,pp. 1087 – 1095, 2002.

[13] T.G. Habetler, F. Profumo, G. Griva, M. Pastorelli, and A. Bettini, “ Stator resistance tuning in a stator-flux field-oriented drive using an instantaneous hybrid flux estimator,”

IEEE Trans. Power Electro., Vol. 13, No. 1, pp. 125 –133,1998.

97 09 09

95-2221-E-011-201-MY2

( )

1.

相關文件