• 沒有找到結果。

1 Barrett, S. D. et al. The discovery of the benzhydroxamate MEK inhibitors CI-1040 and PD 0325901. Bioorganic & Medicinal Chemistry Letters 18, 6501-6504, doi:10.1016/j.bmcl.2008.10.054 (2008).

2 Manning, G., Whyte, D. B., Martinez, R., Hunter, T. & Sudarsanam, S. The Protein Kinase Complement of the Human Genome. Science 298, 1912-1934, doi:10.1126/science.1075762 (2002).

3 Gschwind, A., Fischer, O. M. & Ullrich, A. The discovery of receptor tyrosine kinases: targets for cancer therapy. Nat Rev Cancer 4, 361-370 (2004).

4 Cohen, P. Protein kinases [mdash] the major drug targets of the twenty-first century? Nat Rev Drug Discov 1, 309-315 (2002).

5 Steelman, L. S. et al. JAK//STAT, Raf//MEK//ERK, PI3K//Akt and BCR-ABL in cell cycle progression and leukemogenesis. Leukemia 18, 189-218 (0000).

6 McCubrey, J. A. et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochimica et Biophysica Acta

(BBA) - Molecular Cell Research 1773, 1263-1284,

doi:10.1016/j.bbamcr.2006.10.001 (2007).

7 Kohno, M. & Pouyssegur, J. Targeting the ERK signaling pathway in cancer therapy. Annals of Medicine 38, 200-211, doi:doi:10.1080/07853890600551037 (2006).

8 Khan, T. K. & Alkon, D. L. An internally controlled peripheral biomarker for Alzheimer’s disease: Erk1 and Erk2 responses to the inflammatory signal

bradykinin. Proceedings of the National Academy of Sciences 103, 13203-13207, doi:10.1073/pnas.0605411103 (2006).

9 Matsushita, T. et al. Extracellular Signal-Regulated Kinase 1 (ERK1) and ERK2 Play Essential Roles in Osteoblast Differentiation and in Supporting

Osteoclastogenesis. Molecular and Cellular Biology 29, 5843-5857, doi:10.1128/mcb.01549-08 (2009).

10 Barr, D. et al. Importance of Domain Closure for the Autoactivation of ERK2.

Biochemistry 50, 8038-8048, doi:10.1021/bi200503a (2011).

11 Aronov, A. M. et al. Flipped Out:  Structure-Guided Design of Selective

Pyrazolylpyrrole ERK Inhibitors‡. Journal of Medicinal Chemistry 50, 1280-1287, doi:10.1021/jm061381f (2007).

12 Kiwiel, K. C. Convergence and efficiency of subgradient methods for quasiconvex minimization. Mathematical Programming 90, 1-25, doi:10.1007/pl00011414 (2001).

13 Knyazev, A. V. & Lashuk, I. Steepest Descent and Conjugate Gradient Methods with Variable Preconditioning. SIAM J. Matrix Anal. Appl. 29, 1267-1280, doi:10.1137/060675290 (2007).

14 Kellenberger, E., Rodrigo, J., Muller, P. & Rognan, D. Comparative evaluation of eight docking tools for docking and virtual screening accuracy. Proteins: Structure,

Function, and Bioinformatics 57, 225-242, doi:10.1002/prot.20149 (2004).

15 Leach, A. Molecular modelling : principles and applications. (Pearson Prentice Hall, 2001).

16 Kollman, P. A. et al. Calculating Structures and Free Energies of Complex Molecules:  Combining Molecular Mechanics and Continuum Models. Accounts

of Chemical Research 33, 889-897, doi:10.1021/ar000033j (2000).

17 Michel , J., Foloppe, N. & Essex, J. W. Rigorous Free Energy Calculations in Structure-Based Drug Design. Molecular Informatics 29, 570-578,

doi:10.1002/minf.201000051 (2010).

18 Christ, C. D., Mark, A. E. & van Gunsteren, W. F. Basic ingredients of free energy calculations: A review. Journal of Computational Chemistry 31, 1569-1582, doi:10.1002/jcc.21450 (2010).

19 Steinbrecher, T. & Labahn, A. Towards Accurate Free Energy Calculations in Ligand Protein-Binding Studies. Current medicinal chemistry 17, 767-785, doi:citeulike-article-id:9520323 (2010).

20 Case, D. et al. Amber 11.

21 Duan, Y. et al. A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. Journal of

Computational Chemistry 24, 1999-2012, doi:10.1002/jcc.10349 (2003).

22 Steinbrecher, T., Mobley, D. L. & Case, D. A. Nonlinear scaling schemes for Lennard-Jones interactions in free energy calculations. The Journal of Chemical

Physics 127, 214108-214113 (2007).

23 Miyamoto, S. & Kollman, P. A. Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. Journal of Computational Chemistry 13, 952-962, doi:10.1002/jcc.540130805 (1992).

24 Quigley, D. & Probert, M. I. J. Langevin dynamics in constant pressure extended systems. The Journal of Chemical Physics 120, 11432-11441 (2004).

25 Del Rio, A., Baldi, B. F. & Rastelli, G. Activity Prediction and Structural Insights of Extracellular Signal-Regulated Kinase 2 Inhibitors with Molecular Dynamics Simulations. Chemical Biology & Drug Design 74, 630-635,

doi:10.1111/j.1747-0285.2009.00903.x (2009).

26 Kim, M.-h., Chung, J. Y., Ryu, J.-S. & Hah, J.-M. Structure tuning of

pyrazolylpyrrole derivatives as ERK inhibitors utilizing dual tools; 3D-QSAR and side-chain hopping. Bioorganic & Medicinal Chemistry Letters 21,

4900-4904, doi:10.1016/j.bmcl.2011.06.016 (2011).

27 Szebenyi, G. & Fallon, J. F. in International Review of Cytology Vol. Volume 185 (ed W. Jeon Kwang) 45-106 (Academic Press, 1998).

28 Powers, C. J., McLeskey, S. W. & Wellstein, A. Fibroblast growth factors, their receptors and signaling. Endocrine-Related Cancer 7, 165-197,

doi:10.1677/erc.0.0070165 (2000).

29 Webster, M. K. & Donoghue, D. J. FGFR activation in skeletal disorders: Too much of a good thing. Trends in Genetics 13, 178-182,

doi:10.1016/s0168-9525(97)01131-1 (1997).

30 Wilkie, A. O. M. Craniosynostosis: Genes and Mechanisms. Human Molecular

Genetics 6, 1647-1656, doi:10.1093/hmg/6.10.1647 (1997).

31 Dailey, L., Ambrosetti, D., Mansukhani, A. & Basilico, C. Mechanisms underlying differential responses to FGF signaling. Cytokine & Growth Factor Reviews 16, 233-247, doi:10.1016/j.cytogfr.2005.01.007 (2005).

32 Browaeys-Poly, E., Cailliau, K. & Vilain, J.-P. Transduction cascades initiated by fibroblast growth factor 1 on Xenopus oocytes expressing MDA-MB-231 mRNAs:

Role of Grb2, phosphatidylinositol 3-kinase, Src tyrosine kinase, and phospholipase Cγ. Cellular Signalling 13, 363-368,

doi:10.1016/s0898-6568(01)00149-8 (2001).

33 Cotton, L. M., O’Bryan, M. K. & Hinton, B. T. Cellular Signaling by Fibroblast Growth Factors (FGFs) and Their Receptors (FGFRs) in Male Reproduction.

34 Carpenter, G. & Ji, Q.-s. Phospholipase C-γ as a Signal-Transducing Element.

Experimental Cell Research 253, 15-24, doi:10.1006/excr.1999.4671 (1999).

35 Drafahl, K. A., McAndrew, C. W. & Donoghue, D. J. in Handbook of Cell

Signaling (Second Edition) (eds A. Bradshaw Ralph & A. Dennis Edward)

1939-1947 (Academic Press, 2010).

36 Rusnati, M. & Presta, M. Fibroblast Growth Factors/Fibroblast Growth Factor Receptors as Targets for the Development of Anti-Angiogenesis Strategies.

Current Pharmaceutical Design 13, 2025-2044 (2007).

37 Eswarakumar, V. P., Lax, I. & Schlessinger, J. Cellular signaling by fibroblast growth factor receptors. Cytokine & Growth Factor Reviews 16, 139-149, doi:10.1016/j.cytogfr.2005.01.001 (2005).

38 Plotnikov, A. N., Schlessinger, J., Hubbard, S. R. & Mohammadi, M. Structural Basis for FGF Receptor Dimerization and Activation. Cell 98, 641-650 (1999).

39 Ravindranathan, K. P. et al. Discovery of Novel Fibroblast Growth Factor Receptor 1 Kinase Inhibitors by Structure-Based Virtual Screening. Journal of

Medicinal Chemistry 53, 1662-1672, doi:10.1021/jm901386e (2010).

40 Makino, S. & Kuntz, I. D. Automated flexible ligand docking method and its application for database search. Journal of Computational Chemistry 18, 1812-1825,

doi:10.1002/(sici)1096-987x(19971115)18:14<1812::aid-jcc10>3.0.co;2-h (1997).

41 Morris, G. M. et al. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry 19, 1639-1662,

doi:10.1002/(sici)1096-987x(19981115)19:14<1639::aid-jcc10>3.0.co;2-b (1998).

42 Friesner, R. A. et al. Glide:  A New Approach for Rapid, Accurate Docking and Scoring. 1. Method and Assessment of Docking Accuracy. Journal of Medicinal

Chemistry 47, 1739-1749, doi:10.1021/jm0306430 (2004).

43 Abagyan, R., Totrov, M. & Kuznetsov, D. ICM\&mdash;a new method for protein modeling and design: applications to docking and structure prediction from the distorted native conformation. J. Comput. Chem. 15, 488-506,

doi:10.1002/jcc.540150503 (1994).

44 Jones, G., Willett, P. & Glen, R. C. Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. Journal of Molecular Biology 245, 43-53, doi:10.1016/s0022-2836(95)80037-9 (1995).

45 Goldberg, D. Genetic Algorithms in Search, Optimization, and Machine Learning.

(Addison-Wesley Professional, 1989).

46 Verdonk, M. L., Cole, J. C., Hartshorn, M. J., Murray, C. W. & Taylor, R. D.

Improved protein–ligand docking using GOLD. Proteins: Structure, Function, and

Bioinformatics 52, 609-623, doi:10.1002/prot.10465 (2003).

47 Eldridge, M. D., Murray, C. W., Auton, T. R., Paolini, G. V. & Mee, R. P.

Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. Journal

of Computer-Aided Molecular Design 11, 425-445, doi:10.1023/a:1007996124545

(1997).

48 Huang, S.-Y. & Zou, X. Advances and Challenges in Protein-Ligand Docking.

International Journal of Molecular Sciences 11, 3016-3034 (2010).

49 Parenti, M. D. & Rastelli, G. Advances and applications of binding affinity prediction methods in drug discovery. Biotechnology Advances 30, 244-250, doi:10.1016/j.biotechadv.2011.08.003 (2012).

50 Huang, N., Shoichet, B. K. & Irwin, J. J. Benchmarking Sets for Molecular

Docking. Journal of Medicinal Chemistry 49, 6789-6801, doi:10.1021/jm0608356 (2006).

51 Lovell, S. C., Word, J. M., Richardson, J. S. & Richardson, D. C. The penultimate rotamer library. Proteins: Structure, Function, and Bioinformatics 40, 389-408, doi:10.1002/1097-0134(20000815)40:3<389::aid-prot50>3.0.co;2-2 (2000).

52 Martí-Renom, M. A. et al. COMPARATIVE PROTEIN STRUCTURE

MODELING OF GENES AND GENOMES. Annual Review of Biophysics and

Biomolecular Structure 29, 291-325, doi:doi:10.1146/annurev.biophys.29.1.291

(2000).

53 Kuntal, B., Aparoy, P. & Reddanna, P. EasyModeller: A graphical interface to MODELLER. BMC Research Notes 3, 226 (2010).

54 Mohammadi, M. & McMahon, G. Structures of the tyrosine kinase domain of fibroblast growth factor receptor in complex with inhibi. Science 276, 955 (1997).

55 Eathiraj, S. et al. A Novel Mode of Protein Kinase Inhibition Exploiting

Hydrophobic Motifs of Autoinhibited Kinases. Journal of Biological Chemistry 286, 20677-20687, doi:10.1074/jbc.M110.213736 (2011).

56 Perola, E. Minimizing false positives in kinase virtual screens. Proteins: Structure,

Function, and Bioinformatics 64, 422-435, doi:10.1002/prot.21002 (2006).

57 Laurie, A. T. R. & Jackson, R. M. Q-SiteFinder: an energy-based method for the prediction of protein–ligand binding sites. Bioinformatics 21, 1908-1916, doi:10.1093/bioinformatics/bti315.

58 Najmanovich, R., Kuttner, J., Sobolev, V. & Edelman, M. Side-chain flexibility in proteins upon ligand binding. Proteins: Structure, Function, and Bioinformatics 39, 261-268,

doi:10.1002/(sici)1097-0134(20000515)39:3<261::aid-prot90>3.0.co;2-4 (2000).

59 Mishra, N. et al. Structure based virtual screening of GSK-3β: Importance of protein flexibility and induced fit. Bioorganic &amp; Medicinal Chemistry Letters 19, 5582-5585, doi:10.1016/j.bmcl.2009.08.042 (2009).

60 Cavasotto, C. N. & Abagyan, R. A. Protein Flexibility in Ligand Docking and Virtual Screening to Protein Kinases. Journal of Molecular Biology 337, 209-225, doi:10.1016/j.jmb.2004.01.003 (2004).

61 Totrov, M. & Abagyan, R. Flexible ligand docking to multiple receptor

conformations: a practical alternative. Current Opinion in Structural Biology 18, 178-184, doi:10.1016/j.sbi.2008.01.004 (2008).

相關文件