• 沒有找到結果。

第五章 結論與建議

第二節 研究建議

一、在忽略題組效果的情形下,階層線性模式略較 Rasch 模式穩健,日後若有類 似狀況,可考慮以階層線性模式分析試題參數與能力參數,以期有較好的估 計精準度。

二、比較兩個題組效果程度的差異很小,與兩個題組效果程度的差異較大時,在 這兩種情況的精準度,由結果可知會受試題數、樣本數的影響,建議未來可 用更多元的試題數、樣本數、題組效果程度,以進行更深入的探討。

三、在數學上,三點較能看出整體走勢,而在本研究,題組效果設計上分成三種:

一個「兩個題組皆無題組效果」、兩個「單一題組有題組效果」與兩個「兩

個題組皆有題組效果」,但礙於研究成本,本研究在後面兩種情形,都各設 兩組,建議未來設到三組以上,以便看出參數估計的變化趨勢。日後若要研 究題組效果影響估計的情況,也建議再多增加幾組題組效果程度的設計。

四、本研究探討階層線性模式和 Rasch 模式的估計情形,未來也可探討在題組效 果下,階層線性模式和二參數、三參數對數模式估計情形的比較,瞭解在忽 略題組效果下,不同模式在鑑別度、猜測度的估計情形與比較。

五、本研究因考量時間人力等成本,重複次數選取 50 次,日後建議可重複更多 次,以減少模擬造成的誤差;也建議未來可針對更多的因子、因子水準進行 模擬研究。

六、未來建議將 1-P HGLLM 和 Rasch 模式應用在實徵研究,如國中基本學力測 驗,比較兩個模式在實證資料的估計精準度,使研究更臻完備。

參考文獻

中文部分

王文中(1995)。學校效率研究中的因果推論:以階層線性模式為例。教育與心理 研究,18,51-82。

余民寧(1991)。IRT學理與應用。取自http://www.edutest.com.tw/e-irt/irt2.htm.

林原宏(1997)。教育研究資料的階層線性模式分析。國立台中師範學院學報,11,

489-509。

高新建(1999)。階層線性模式在教育縱貫研究上的應用:以數學學習機會為例。

臺北市立師範學院學報,30,127-148。

黃建豪(2006)。應用階層線性模式於顧客滿意度之研究。大葉大學工業工程與科 技管理學系碩士論文。

黃耀加、林原宏(2007)。班級規模與學生數學成就、數學態度之階層線性模式分 析:以 PISA2003 為例。第四屆統計方法學學術研討會,臺北市。

溫福星(2006)。階層線性模式。臺北市:雙葉書廊有限公司。

葛湘瑋(2004)。應用線性混合效果模式於建立多層縱向資料的模式之實例研究。

教育與心理研究,27,399-419。

鄧志瑛(2005)。以階層線性模式分析溫泉消費者滿意度與再遊意願影響因素之研 究。東吳大學國際貿易學系碩士論文。

英文部分

Ackerman, T. A. (1987). The robust of LOGIST and BILOG IRT estimation programs

to violations of local independence. Paper presented at the annual meeting of the

American Education Research Association, Washington, DC. (ERIC Document Reproduction Service No. ED284902)

Adams, R. J., Wilson, M., & Wang, W. (1997). The multidimensional random

coefficients multinomial logit. Applied Psychological Measurement, 21, 1-23.

Beretvas, S., & Kamata, A. (2005). The multilevel measurement model: Introduction to the special issue. Journal of Applied Measurement, 6, 247-254.

Bishop, Y. M. M., Fienberg, S. E., & Holland, P. W. (1975). Discret multivariave

analysis. Cambridge, MA: MIT Press.

Bock, R. D., & Zimowski, M. F. (1997). Multiple group IRT. In W. van der Linden and R. Hambleton (Eds.), Handbook of modern item response theory (pp.

433-448). New York: Springer.

Bock, R. D., Muraki, E., & Preiffenberger, W. (1988). Item pool maintenance in the presence of item parameter drift. Journal of Education Measurement, 25, 275-285.

Boeck, P. D., & Wilson, M. (2004). Explantory item response models. Springer, New York.

Bradlow, E. T., Wainer, H., & Wang, X. (1999). A Bayesian random effects model for testlets. Psychometrika, 64, 153-168.

Bryk, A. S., & Raundenbush, S. W. (1992). Hierarchical linear models: Applications

and data analysis methods. Newbury Park, CA: Sage.

Chen, W., & Thissen, D. (1997). Local dependence indexes for item paris using item response theory. Journal of Educational and Behavioral Statistics, 22, 265-289.

Cheong, Y. F., & Raudenbush, S. W. (2000). Measurement and structural models for children’s problems behaviors. Psychological Methods, 5, 477-495.

DeMars, C. E. (2006). Application of the bi-factor multidimentional item response theory model to testlet-based tests. Journal of Education Measurement, 43, 145-168.

Drasgow, F. (1989). An evaluation of marginal maximum likelihood estimation for the

two-parameter logistic model. Applied Psychological Measurement, 13, 77-90.

Du, Z. (1998). Modeling conditional item dependencies with a three-parameter

logistic testlet model. Doctoral dissertation, Columbia University.

Embretson, S. E., & Reise, S. P. (2000). Item response theory for psychologists.

Mahwash, NJ: Lawrence Erlbaum Associates.

Ferrara, S., Huynh, H., & Michaels, H. (1999). Contextual explanations of local dependence in item cluster in a large scale hands-on science performance assessment. Journal of Education Measurement, 2, 119-140.

Fischer, G. H. (1973). The linear logistic test model as an instrument in educational research. Acta Psychologica, 37, 359-374.

Fischer, G. H. (1983). Logistic latent trait models with linear constraints.

Psychometrika, 48, 3-26.

Fox, J. P. (2004). Applications of multilevel IRT modeling. School Effectiveness and

School Improvement, 15, 261-280.

Gessaroli, M. E., & Folske, J. C. (2002). Generalizing the reliability of tests comprised of testlets. International Journal of Testing, 2, 277-295.

Glas, C. A. W., Wainer, H., & Bradlow, E. T. (2000). MML and EAP estimation in testlet-based adaptive testing. In W. J. van der Linden and C. C. W. Glas(Eds.),

Computerized adaptive testing: Theory and practice (pp. 271-287). Dordrecht,

Netherlands: Kluwer.

Hambleton, R. K., & Swaminathan, H. (1985). Item response theory: Principles and

applications. Boston: Kluwer.

Hambleton, R. K., Swaminathan, H., & Rogers, H. J. (1991). Fundamentals of item

response theory. Newbury Park, CA: Sage.

Hedeker, D., & Gibbons, R. D. (1993). Mixor: A computer program for mixed-effects

ordinal probit and logistic regression analysis [Computer program]. University

of Illinois at Chicago.

Hox, J. J. (2002). Multilevel analysis: Techniques and applications. Mahwah, NJ:

Lawrence Erlbaum Associates.

Huang, C. (2004). Student education of teaching effectiveness: A hierarchical linear model. Psychological Testing, 51, 163-184.

Hulin, C. L., Drasgow, F., & Parsons, L. K. (1983). Item response theory. Homewood, IL: Dow-Jones-Irwin.

Jiao, H., & Kamata, A. (2001). Model comparison in the presence of local item

dependence. Paper presented at the annual meeting of the American educational

research association, Chicago.

Jiao, H., Wang, S., & Kamata, A. (2005). Modeling local item dependence with a hierarchical generalized linear model. Journal of Applied Measurement, 6, 311-321.

Kamata, A. (1998a). One-parameter hierarchical generalized linear logistic model:

An application of HGLM to IRT. American Education Research Association, San

Diega, CA.

Kamata, A. (1998b). Some generalizations of the Rasch model: An application of the

hierarchical generalized linear model. Doctoral dissertation, Michigan State

University, East Lansing.

Kamata, A. (2001). Item analysis by the hierarchical generalized linear model. Journal

of Education Measurement, 38, 79-93.

Kim, S. H., Cohen, A. S., & Lin, Y. H. (2005). LDID: A computer program for local

dependence iindices for dichotomous items [software and manual]. Athens, GA:

University of Georgia.

Kingston, N. M., & Dorans, N. J. (1982). The feasibility of using item response theory

as a psychometric model for the GRE aptitude test (GRE Board Professional

Report Greb 79-15P, ETS Research Report 82-12). Princeton, NJ: Education Testing Service.

Latour, D., Latour, K., & Wolfinger, R. D. (1994). Getting Started With PROC

MIXED. Cary, NC: SAS Institute, Inc.

Lee, G., Brennan, R., & Friabie, D. (2000). Incorporating the testlet concept score analyses. Educational Measurement: Issue and Practice, 19, 9-15.

Li, Y., Bolt, D. M., & Fu, J. (2004). A comparison of alternative models for testlets.

Paper presented at the annual meeting of the American Educational Research Association, San Diego, CA.

Li, Y., Bolt, D. M., & Fu, J. (2005). A test characteristic curve linking method for the testlet model. Applied Psychological Measurement, 29, 340-356.

Linacre, J. M. (1989). Many-faceted Rasch measurement. Chicago: MESA Press.

Littell, C. R., Milliken, G. A., Stroup, W. W., & Wolfinger, R. D. (1996). SAS system

for mixed models. SAS Institute Inc., Cary, NC, USA.

Lord, F. M. (1974). Quick estimates of the relative efficiency of two tests as a function of ability level. Journal of Education Measurement, 11, 247-254.

Lord, F. M. (1980). Application of item response theory to practical testing problems.

Hillsdale, NJ: Lawrence Erlbaum Associates.

Maris, E. (1999). Estimating multiple classification latent class models. Psychometrika,

64, 187-212.

Masters, G. N. (1982). A Rasch model for partial credit scoring. Psychometrika, 47, 149-174.

McDonald, R. P. (1981). The dimensionality of tests and items, British Journal of

Mathematical and Statistical Psychology, 34, 100-117.

McDonald, R. P. (1982). Linear versus nonlinear models in item response theory.

Applied Psychological Measurement, 6, 379-396.

Mckinley, R. L., & Reckase, M. D. (1982). The use of the general Rasch model with

multidimensional item response data. Iowa City, IA: American College Testing.

Miller, A. D., & Murdock, T. B. (2007). Modeling latent true scores to determine the utility of aggregate student perceptions as classroom indicators in HLM: The case of classroom goal structures. Contemporary Education Psychology, 32, 83-104.

Mislevy, R. J. (1983). Item response models for grouped data. Journal of Education

Statistics, 8, 271-288.

Mislevy, R. J. (1987). Exploiting auxiliary information about examinees in the estimation of item parameters. Applied Psychological Measurement, 11, 81-91.

Mislevy, R. J., & Bock, R. D. (1989). A hierarchical item-response model for educational testing. In R. Bock (Ed.), Multilevel analysis of educational data (pp.

57-74). San Diego: Academic Press.

Miyazaki, Y. (2005). Some links between classical and modern test theory via the two-level hierarchical generalized linear model. Journal of Applied Measurement,

6, 289-310.

Neyman, J., & Scott, E. L. (1948). Consistent estimates based on partially consistent observation. Econometrika, 16, 1-5.

Nofer, D. C. (2007). Conditional item dependence for testlet items. Doctoral dissertation, Fordham University, New York.

Orlando, M., & Thissen, D. (2000). Likelihood-based item-fit indices for dichotomous item response theory models. Applied Psychological Measurement, 24, 50-64.

Pastor, D. A. (2003). The use of multilevel item response theory modeling in applied

research: An illustration. Applied Measurement in Education,16, 223-243.

Patz, R. J., Junker, B. W., and Jihnson, M. S. (1999). The hierarchical rater model for

rated test items and its applications to large-scale educational assessment data.

Paper presented at the Annual Meeting of the American Educational Research Assosiation, Montreal, Canada.

Press, W. H., Flannery, B. P., Teukolsky, S. A., & Vetterling, W. T. (1986). Numerical

recipes: The art of scientific computing. New York: Cambridge University Press.

Raudenbush, S., & Bryk, A. S. (2002). Hierarchical linear models: Applications and

data analysis methods(

2nd

ed.). Thousand Qaks, CA: Sage Publications.

Rijmen, F., Tuerlinckx, F., Meulders, M., Smits, D. J. M., Balazes, K. (2005) Mixed model estimation methods for the Rasch model. Journal of Applied Measurement,

6, 273-288.

Roberts, J. K., & Herrington, R. (2005). Demonstration of software programs for estimating multilevel measurement model parameters. Journal of Applied

Measurement, 6, 255-272.

Rosenbaum, P. R. (1988). Item bundles. Psychometrika, 53, 349-359.

Samejima, F. (1969). Estimation of latent ability using a response pattern of graded scores. Psychometrika Monograph Supplement, 17, 1-100.

SAS Institute (1992). SAS technical report P-229, SAS/STAT software: Changes and

enhancements. Cary, NC: Author.

Seong, T. J. (1990). Sensitivity of marginal maximum likelihood estimation of item and ability parameters to the characteristic of the prior ability distributions.

Applied Psychological Measurement, 14, 299-311.

Singer, J. D. (1997). Notes on using SAS PROC MIXED. Cambridge, MA: Harvard Graduate School of Education

Singer, J. D. (1998). Using SAS PROC MIXED to fit multilevel models, Hierarchical models, and individual growth models. Journal of Education and Behavioral

Statistics, 24, 323-355.

Sireci, S. G., Thissen, D., & Wainer, H. (1991). On the reliability of testlet-based tests.

Journal of Educational Measurement, 28, 237-247.

Spray, J., & Ackerman, T. (1987). The effect of item response dependency on trait or

ability dimensionality. ACT Research Report Series, 87-10. Iowa City, IA:

American College Testing.

Stone, C. A. (1992). Recovery of marginal maximum likelihood estimation in the two-parameter logistic response model: An evaluation of Multilog. Applied

Psychological Measurement, 16, 1-16.

Stout, W. F. (1987). A parameter approach for assessing latent trait dimensionality.

Psychometrika, 52, 589-617.

Stout, W. F. (1990). A new item response theory modeling approach with applications to unidimensional assessment and ability estimation, Psychometrika, 55, 293-326.

Thissen, D., & Steinberg, L. (1986). A taxonomy of item response models,

Psychometrika, 51, 567-577.

Thissen, D., Steinberg, L., & Wainer, H. (1993). Detection of differential item functioning using the parameters of item response models. In P. Holland and H.

Wainer (Eds.), Differential item functioning (pp. 67-113). Hillsdale, NJ:

Lawrence Erlbaum Associates.

Thissen, D., Sternberg, L., & Mooney, J. A. (1989). Trace lines for testlet: a use of multiple-categorical-response models. Journal of Education Measurement, 26, 247-260.

Tuerlinckx, F., & Boeck, P. (2001). The effect of ignoring item iterations on the

estimated discrimination parameters on item response theory. Psychological

Methods, 6,181-195.

van den Noortgate, W., De Boeck, P., & Meulders, M. (2003). Cross-classification multilevel logistic models in psychometrics. Journal of Education and

Behavioral Statistics, 28, 369-386.

van den Wollenberg, A. L. (1982). Two new test statistics for the Rasch model.

Psychometrika, 47, 123-140.

Wainer, H. (1995). Precision and differential item functioning on a testlet-based test:

The 1991 Law School Admission Test as an example. Applied Measurement in

Education, 8, 157-187.

Wainer, H., & Kiely, G. L. (1987). Item clusters and computerized adaptive testing: A case for testlets. Journal of Educational Measurement, 24, 185-201.

Wainer, H., & Thissen, D. (1996). How is reliability related to the quality of test score?

What is the effect of local dependence on reliability? Educational Measurement:

Issues and Practice, 15, 22-29.

Wainer, H., & Wang, C. (2000). Using a new statistical model for testlets to score TOEFL. Journal of Education Measurement, 37, 203-220.

Wainer, H., Bradlow, E. T., & Du, Z. (2000). Testlet response theory: An analog for the 3PL model using in testlet-based adaptive testing. In W. van der Linden and C.

A. W. Glas(Eds.), Computerized adaptive testing: Theory and practice (pp.

245-269). London: Kluwer.

Wainer, H., Kaplan, B., & Lewis, C. (1992). A comparison of the performance of simulated hierarchical and linear testlets. Journal of Educational Measurement,

29, 243-251.

Wang, J. (2002). Reliability generalization: An HLM approach. Journal of

Instructional Psychology, 29, 213-218.

Wang, W. C., & Liu, C. Y. (2007). Formulation and application of the generalized multilevel facets model. Education and Psychological Measurement, 67, 583-605.

Wang, W. C., & Wilson, M. (2005). The Rasch testlet model. Applied Psychological

Measurement, 29, 126-149.

Wang, X., Bradlow, E. T., & Wainer, H. (2002). A general Bayesian model for testlets:

theory and applications. Applied Psychological Measurement, 26, 109-128.

Williams, N. J., & Beretvas, S. N. (2006). DIF identification using HGLM for polytomous items. Applied Psychological Measurement, 30, 22-42.

Yang, M. (1995). A simulation study for the assessment of the non-linear Hierarchical

model estimation via approximate maximum likelihood. Michigan State

University.

Yen, W. (1993). Scaling performance assessments: Strategies for managing local item dependence. Journal of Education Measurement, 30, 187-213.

Yen, W. M. (1981). Using simulation results to choose a latent trait model. Applied

Psychological Measurement, 5, 245-262.

Yen, W. M. (1984). Effects of local item dependence of the fit and equating performance of the three-parameter logistic model. Applied Psychological

Measurement, 8,125-145.

Zenisky, A. L., Hambleton, R. K., & Sireci, S. G. (1999). Effects of item local

dependence on the validity of IRT item, test, and ability statistics. Washington,

DC: Association of American Medical Colleges.

Zhang, J. (2007). Dichotomous or polytomous model? Equating of testlet-based tests

in light of conditional item pair correlations. Doctoral dissertation, The

University of Iowa, United States, Iowa.

Zhang, J. & Stout, W. F. (1999). Conditional covariance structure of generalized compensatory multidimentional items, Psychometrika, 64, 129-152.

Zwinderman, A. H. (1991). A generalized Rasch model for manifest predictors.

Psychometrika, 56, 589-600.

附錄一

%inc 'e:\sas6\glmm800.sas' / nosource;

%glimmix(data=t1,

procopt=method=ML, stmts=%str(

class person;

model resp = i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11 i12 i13 i14 i15 i16 i17 i18 i19 / solution;

random person /solution;), error=binomial,

link=logit ) run;

附錄二

B-100 B-300 B-900

S-100 S-300 S-900

40題

B-100 B-300 B-900

S-100 S-300 S-900

圖 4-1 20 題時試題難度的 RMSE 折線圖 圖 4-2 40 題時試題難度的 RMSE 折線圖

B-100 B-300 B-900

S-100 S-300 S-900

20題

B-100 B-300 B-900

S-100 S-300 S-900

圖 4-3 80 題時試題難度的 RMSE 折線圖 圖 4-4 20 題時試題難度的 BIAS 折線圖

40題

B-100 B-300 B-900

S-100 S-300 S-900

80題

B-100 B-300 B-900

S-100 S-300 S-900

圖 4-5 40 題時試題難度的 BIAS 折線圖 圖 4-6 80 題時試題難度的 BIAS 折線圖

B-100 B-300 B-900

S-100 S-300 S-900

40題

B-100 B-300 B-900

S-100 S-300 S-900

圖 4-7 20 題時試題難度的 MCSE 折線圖 圖 4-8 40 題時試題難度的 MCSE 折線圖

80題

B-100 B-300 B-900

S-100 S-300 S-900

20題

B-100 B-300 B-900

S-100 S-300 S-900

圖 4-9 80 題時試題難度的 MCSE 折線圖 圖 4-10 20 題時能力值的 RMSE 折線圖

B-100 B-300 B-900

S-100 S-300 S-900

80題

B-100 B-300 B-900

S-100 S-300 S-900

圖 4-11 40 題時能力值的 RMSE 折線圖 圖 4-12 80 題時能力值的 RMSE 折線圖

20題

B-100 B-300 B-900

S-100 S-300 S-900

40題

B-100 B-300 B-900

S-100 S-300 S-900

圖 4-13 20 題時能力值的均差折線圖 圖 4-14 40 題時能力值的均差折線圖

B-100 B-300 B-900

S-100 S-300 S-900

100人

B-20 B-40 B-80

S-20 S-40 S-80

圖 4-15 80 題時能力值的均差折線圖 圖 4-16 100 人時試題難度的 RMSE 折線圖

300人

B-20 B-40 B-80

S-20 S-40 S-80

900人

B-20 B-40 B-80

S-20 S-40 S-80

圖 4-17 300 人時試題難度的 RMSE 折線圖 圖 4-18 900 人時試題難度的 RMSE 折線圖

B-20 B-40 B-80

S-20 S-40 S-80

300人

B-20 B-40 B-80

S-20 S-40 S-80

圖 4-19 100 人時試題難度的 BIAS 折線圖 圖 4-20 300 人時試題難度的 BIAS 折線圖

900人

B-20 B-40 B-80

S-20 S-40 S-80

100人

B-20 B-40 B-80

S-20 S-40 S-80

圖 4-21 900 人時試題難度的 BIAS 折線圖 圖 4-22 100 人時試題難度的 MCSE 折線圖

B-20 B-40 B-80

S-20 S-40 S-80

900人

B-20 B-40 B-80

S-20 S-40 S-80

圖 4- 23 300 人時試題難度的 MCSE 折線圖 圖 4- 24 900 人時試題難度的 MCSE 折線圖

100人

B-20 B-40 B-80

S-20 S-40 S-80

300人

B-20 B-40 B-80

S-20 S-40 S-80

圖 4-25 100 人時能力值的 RMSE 折線圖 圖 4-26 300 人時能力值的 RMSE 折線圖

B-20 B-40 B-80

S-20 S-40 S-80

900人

B-20 B-40 B-80

S-20 S-40 S-80

圖 4-27 900 人時能力值的 RMSE 折線圖 圖 4-28 100 人時能力值的均差折線圖

300人

B-20 B-40 B-80

S-20 S-40 S-80

900人

B-20 B-40 B-80

S-20 S-40 S-80

圖 4-29 300 人時能力值的均差折線圖 圖 4-30 900 人時能力值的均差折線圖

B-100 B-300 B-900

S-100 S-300 S-900

(0,2)

B-100 B-300 B-900

S-100 S-300 S-900

圖 4-31 (0,0) 時試題難度的 RMSE 折線圖 圖 4-32 (0,2) 時試題難度的 RMSE 折線圖

(0,8)

B-100 B-300 B-900

S-100 S-300 S-900

(2,2)

B-100 B-300 B-900

S-100 S-300 S-900

圖 4-33 (0,8) 時試題難度的 RMSE 折線圖 圖 4-34 (2,2) 時試題難度的 RMSE 折線圖

B-100 B-300 B-900

S-100 S-300 S-900

(2,8)

B-100 B-300 B-900

S-100 S-300 S-900

圖 4-35 (2,8) 時試題難度的 RMSE 折線圖 圖 4-36 (0,0) 時試題難度的 BIAS 折線圖

(0,2)

B-100 B-300 B-900

S-100 S-300 S-900

(0,8)

B-100 B-300 B-900

S-100 S-300 S-900

圖 4-37 (0,2) 時試題難度的 BIAS 折線圖 圖 4-38 (0,8) 時試題難度的 BIAS 折線圖

B-100 B-300 B-900

S-100 S-300 S-900

(2,8)

B-100 B-300 B-900

S-100 S-300 S-900

圖 4-39 (2,2) 時試題難度的 BIAS 折線圖 圖 4-40 (2,8) 時試題難度的 BIAS 折線圖

(0,0)

B-100 B-300 B-900

S-100 S-300 S-900

(0,2)

B-100 B-300 B-900

S-100 S-300 S-900

圖 4-41 (0,0) 時試題難度的 MCSE 折線圖 圖 4-42 (0,2) 時試題難度的 MCSE 折線圖

B-100 B-300 B-900

S-100 S-300 S-900

(2,2)

B-100 B-300 B-900

S-100 S-300 S-900

圖 4-43 (0,8) 時試題難度的 MCSE 折線圖 圖 4-44 (2,2) 時試題難度的 MCSE 折線圖

(2,8)

B-100 B-300 B-900

S-100 S-300 S-900

(0,0)

B-100 B-300 B-900

S-100 S-300 S-900

圖 4-45 (2,8) 時試題難度的 MCSE 折線圖 圖 4-46 (0,0) 時能力值的 RMSE 折線圖

B-100 B-300 B-900

S-100 S-300 S-900

(0,8)

B-100 B-300 B-900

S-100 S-300 S-900

圖 4-47 (0,2) 時能力值的 RMSE 折線圖 圖 4-48 (0,8) 時能力值的 RMSE 折線圖

(2,2)

B-100 B-300 B-900

S-100 S-300 S-900

(2,8)

B-100 B-300 B-900

S-100 S-300 S-900

圖 4-49 (2,2) 時能力值的 RMSE 折線圖 圖 4-50 ( 2,8) 時能力值的 RMSE 折線圖

B-100 B-300 B-900

S-100 S-300 S-900

(0,2)

B-100 B-300 B-900

S-100 S-300 S-900

圖 4-51 (0,0) 時能力值的均差折線圖 圖 4-52 (0,2) 時能力值的均差折線圖

(0,8)

B-100 B-300 B-900

S-100 S-300 S-900

(2,2)

B-100 B-300 B-900

S-100 S-300 S-900

圖 4-53 (0,8) 時能力值的均差折線圖 圖 4-54 (2,2) 時能力值的均差折線圖

B-100 B-300 B-900

S-100 S-300 S-900

圖 4-55 (2,8) 時能力值的均差折線圖

相關文件